Lecture 8: Time Series Analysis

MIT 18.S096

Dr. Kempthorne

Fall 2013
Outline

1. Time Series Analysis
 - Stationarity and Wold Representation Theorem
 - Autoregressive and Moving Average (ARMA) Models
 - Accommodating Non-Stationarity: ARIMA Models
 - Estimation of Stationary ARMA Models
 - Tests for Stationarity/Non-Stationarity
Stationarity and Wold Representation Theorem

A stochastic process \(\{..., X_{t-1}, X_t, X_{t+1}, \ldots \} \) consisting of random variables indexed by time index \(t \) is a **time series**.

The stochastic behavior of \(\{X_t\} \) is determined by specifying the probability density/mass functions (pdf’s)

\[
p(x_{t_1}, x_{t_2}, \ldots, x_{t_m})
\]

for all finite collections of time indexes

\[
\{(t_1, t_2, \ldots, t_m), \ m < \infty\}
\]
i.e., all finite-dimensional distributions of \(\{X_t\} \).

Definition: A time series \(\{X_t\} \) is **Strictly Stationary** if

\[
p(t_1 + \tau, t_2 + \tau, \ldots, t_m + \tau) = p(t_1, t_2, \ldots, t_m),
\]

\(\forall \tau, \forall m, \forall (t_1, t_2, \ldots, t_m) \).

(Invariance under time translation)
Definitions of Stationarity

Definition: A time series \(\{ X_t \} \) is **Covariance Stationary** if

\[
E(X_t) = \mu \\
Var(X_t) = \sigma^2_X \\
Cov(X_t, X_{t+\tau}) = \gamma(\tau)
\]

(all constant over time \(t \))

The **auto-correlation function** of \(\{ X_t \} \) is

\[
\rho(\tau) = \frac{Cov(X_t, X_{t+\tau})}{\sqrt{Var(X_t) \cdot Var(X_{t+\tau})}} = \frac{\gamma(\tau)}{\gamma(0)}
\]
Wold Representation Theorem: Any zero-mean covariance stationary time series \(\{X_t\} \) can be decomposed as \(X_t = V_t + S_t \) where

- \(\{V_t\} \) is a linearly deterministic process, i.e., a linear combination of past values of \(V_t \) with constant coefficients.
- \(S_t = \sum_{i=0}^{\infty} \psi_i \eta_{t-i} \) is an infinite moving average process of error terms, where
 - \(\psi_0 = 1, \sum_{i=0}^{\infty} \psi_i^2 < \infty \)
 - \(\{\eta_t\} \) is linearly unpredictable white noise, i.e.,
 \[E(\eta_t) = 0, \ E(\eta_t^2) = \sigma^2, \ E(\eta_t \eta_s) = 0 \ \forall t, \ \forall s \neq t, \]
 and \(\{\eta_t\} \) is uncorrelated with \(\{V_t\} : \)
 \[E(\eta_t V_s) = 0, \ \forall t, s \]
Intuitive Application of the Wold Representation Theorem

Suppose we want to specify a covariance stationary time series
\(\{X_t\} \) to model actual data from a real time series
\(\{x_t, t = 0, 1, \ldots, T\} \)

Consider the following strategy:

- Initialize a parameter \(p \), the number of past observations in
 the linearly deterministic term of the Wold Decomposition of
 \(\{X_t\} \)
- Estimate the linear projection of \(X_t \) on \((X_{t-1}, X_{t-2}, \ldots, X_{t-p}) \)
 - Consider an estimation sample of size \(n \) with endpoint \(t_0 \leq T \).
 - Let \(\{j = -(p-1), \ldots, 0, 1, 2, \ldots n\} \) index the subseries of
 \(\{t = 0, 1, \ldots, T\} \) corresponding to the estimation sample and
 define \(\{y_j : y_j = x_{t_0-n+j}\} \), (with \(t_0 \geq n + p \))
 - Define the vector \(\mathbf{Y} \ (T \times 1) \) and matrix \(\mathbf{Z} \ (T \times [p+1]) \) as:
Estimate the linear projection of X_t on $(X_{t-1}, X_{t-2}, \ldots, X_{t-p})$

$y = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$

$Z = \begin{bmatrix} 1 & y_0 & y_1 & \cdots & y_{(p-1)} \\ 1 & y_1 & y_0 & \cdots & y_{(p-2)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & y_{n-1} & y_{n-2} & \cdots & y_{n-p} \end{bmatrix}$

Apply OLS to specify the projection:

$\hat{y} = Z(Z^T Z)^{-1} Z y$

$= \hat{P}(Y_t \mid Y_{t-1}, Y_{t-2}, \ldots, Y_{t-p})$

$= \hat{y}(p)$

Compute the projection residual

$\hat{\epsilon}^{(p)} = y - \hat{y}(p)$
Apply time series methods to the time series of residuals \(\{\hat{\epsilon}_j^{(p)}\} \) to specify a moving average model:

\[
\epsilon_t^{(p)} = \sum_{i=0}^{\infty} \psi_j \eta_{t-i}
\]

yielding \(\{\hat{\psi}_j\} \) and \(\{\hat{\eta}_t\} \), estimates of parameters and innovations.

Conduct a case analysis diagnosing consistency with model assumptions:

- Evaluate orthogonality of \(\hat{\epsilon}^{(p)} \) to \(Y_{t-s} \), \(s > p \).
 - If evidence of correlation, increase \(p \) and start again.
- Evaluate the consistency of \(\{\hat{\eta}_t\} \) with the white noise assumptions of the theorem.
 - If evidence otherwise, consider revisions to the overall model:
 - Changing the specification of the moving average model.
 - Adding additional ‘deterministic’ variables to the projection model.
Note:

- Theoretically,
 \[
 \lim_{p \to \infty} \hat{y}^{(p)} = \hat{y} = P(Y_t \mid Y_{t-1}, Y_{t-2}, \ldots)
 \]
 but if \(p \to \infty \) is required, then \(n \to \infty \) while \(p/n \to 0 \).

- Useful models of covariance stationary time series have
 - Modest finite values of \(p \) and/or include
 - Moving average models depending on a parsimonious number of parameters.
Lag Operator $L()$

Definition The lag operator $L()$ shifts a time series back by one time increment. For a time series $\{X_t\}$:

$$L(X_t) = X_{t-1}.$$

Applying the operator recursively we define:

- $L^0(X_t) = X_t$
- $L^1(X_t) = X_{t-1}$
- $L^2(X_t) = L(L(X_t)) = X_{t-2}$

...

- $L^n(X_t) = L(L^{n-1}(X_t)) = X_{t-n}$

Inverses of these operators are well defined as:

$$L^{-n}(X_t) = X_{t+n}, \text{ for } n = 1, 2, \ldots$$
Wold Representation with Lag Operators

The Wold Representation for a covariance stationary time series \(\{X_t\} \) can be expressed as
\[
X_t = \sum_{i=0}^{\infty} \psi_i \eta_{t-i} + V_t = \sum_{i=0}^{\infty} \psi_i L^i(\eta_t) + V_t = \psi(L)\eta_t + V_t
\]

where \(\psi(L) = \sum_{i=0}^{\infty} \psi_i L^i \).

Definition The Impulse Response Function of the covariance stationary process \(\{X_t\} \) is
\[
IR(j) = \frac{\partial X_t}{\partial \eta_{t-j}} = \psi_j.
\]

The long-run cumulative response of \(\{X_t\} \) is
\[
\sum_{i=0}^{\infty} IR(j) = \sum_{i=0}^{\infty} \psi_i = \psi(L) \text{ with } L = 1.
\]
Suppose that the operator $\psi(L)$ is invertible, i.e.,

$$
\psi^{-1}(L) = \sum_{i=0}^{\infty} \psi_i^* L^i
$$

such that

$$
\psi^{-1}(L) \psi(L) = I = L^0.
$$

Then, assuming $V_t = 0$ (i.e., X_t has been adjusted to $X_t^* = X_t - V_t$), we have the following equivalent expressions of the time series model for \{X_t\}

$$
X_t = \psi(L) \eta_t
$$

$$
\psi^{-1}(L) X_t = \eta_t
$$

Definition When $\psi^{-1}(L)$ exists, the time series \{X_t\} is **Invertible** and has an auto-regressive representation:

$$
X_t = (\sum_{i=0}^{\infty} \psi_i^* X_{t-i}) + \eta_t
$$
Outline

1. **Time Series Analysis**
 - Stationarity and Wold Representation Theorem
 - Autoregressive and Moving Average (ARMA) Models
 - Accommodating Non-Stationarity: ARIMA Models
 - Estimation of Stationary ARMA Models
 - Tests for Stationarity/Non-Stationarity
ARMA\((p,q)\) Models

Definition: The times series \(\{X_t\} \) follows the ARMA\((p,q)\) Model with auto-regressive order \(p \) and moving-average order \(q \) if

\[
X_t = \mu + \phi_1(X_{t-1} - \mu) + \phi_2(X_{t-1} - \mu) + \cdots + \phi_p(X_{t-p} - \mu) + \eta_t + \theta_1\eta_{t-1} + \theta_2\eta_{t-2} + \cdots + \theta_q\eta_{t-q}
\]

where \(\{\eta_t\} \) is \(WN(0,\sigma^2) \), “White Noise” with

\[
E(\eta_t) = 0, \quad \forall t
\]

\[
E(\eta_t^2) = \sigma^2 < \infty, \quad \forall t, \quad \text{and} \quad E(\eta_t\eta_s) = 0, \quad \forall t \neq s
\]

With lag operators

\[
\phi(L) = (1 - \phi_1L - \phi_2L^2 - \cdots - \phi_pL^p)
\]

\[
\theta(L) = (1 + \theta_1L + \theta_2L^2 + \cdots + \theta_qL^q)
\]

we can write

\[
\phi(L) \cdot (X_t - \mu) = \theta(L)\eta_t
\]

and the Wold decomposition is

\[
X_t = \mu + \psi(L)\eta_t, \quad \text{where} \quad \psi(L) = [\phi(L)]^{-1}\theta(L)
\]
AR(p) Models

Order-\(p\) Auto-Regression Model: AR(p)

\[\phi(L) \cdot (X_t - \mu) = \eta_t \text{ where} \]
\[\{\eta_t\} \text{ is } WN(0, \sigma^2) \text{ and} \]
\[\phi(L) = 1 - \phi_1 L - \phi_2 L^2 - \cdots + \phi_p L^p \]

Properties:

- Linear combination of \(\{X_t, X_{t-1}, \ldots, X_{t-p}\}\) is \(WN(0, \sigma^2)\).
- \(X_t\) follows a linear regression model on explanatory variables \((X_{t-1}, X_{t-2}, \ldots, X_{t-p})\), i.e

\[X_t = c + \sum_{j=1}^{p} \phi_j X_{t-j} + \eta_t \]

where \(c = \mu \cdot \phi(1)\), (replacing \(L\) by 1 in \(\phi(L)\)).
AR(p) Models

Stationarity Conditions
Consider $\phi(z)$ replacing L with a complex variable z.

$$\phi(z) = 1 - \phi_1 z - \phi_2 z^2 - \cdots - \phi_p z^p.$$

Let $\lambda_1, \lambda_2, \ldots, \lambda_p$ be the p roots of $\phi(z) = 0$.

$$\phi(L) = (1 - \frac{1}{\lambda_1} L) \cdot (1 - \frac{1}{\lambda_2} L) \cdots (1 - \frac{1}{\lambda_p} L)$$

Claim: $\{X_t\}$ is covariance stationary if and only if all the roots of $\phi(z) = 0$ (the “characteristic equation”) lie outside the unit circle $\{z : |z| \leq 1\}$, i.e., $|\lambda_j| > 1$, $j = 1, 2, \ldots, p$

- For complex number λ: $|\lambda| > 1$,

$$ (1 - \frac{1}{\lambda} L)^{-1} = 1 + \left(\frac{1}{\lambda}\right)L + \left(\frac{1}{\lambda}\right)^2 L^2 + \left(\frac{1}{\lambda}\right)^3 L^3 + \cdots = \sum_{i=0}^{\infty} \left(\frac{1}{\lambda}\right)^i L^i $$

* $\phi^{-1}(L) = \prod_{j=1}^{p} \left[\left(1 - \frac{1}{\lambda_j} L\right)^{-1}\right]$
Suppose \(\{X_t\} \) follows the \(AR(1) \) process, i.e.,
\[
X_t - \mu = \phi(X_{t-1} - \mu) + \eta_t, \quad t = 1, 2, \ldots
\]
where \(\eta_t \sim WN(0, \sigma^2) \).

- The characteristic equation for the \(AR(1) \) model is
 \[
 (1 - \phi z) = 0
 \]
 with root \(\lambda = \frac{1}{\phi} \).
- The \(AR(1) \) model is covariance stationary if (and only if)
 \[
 |\phi| < 1 \quad (\text{equivalently } |\lambda| > 1)
 \]
- The first and second moments of \(\{X_t\} \) are
 \[
 E(X_t) = \mu
 \]
 \[
 Var(X_t) = \sigma^2_X = \sigma^2 / (1 - \phi) \quad (= \gamma(0))
 \]
 \[
 Cov(X_t, X_{t-1}) = \phi \cdot \sigma^2_X
 \]
 \[
 Cov(X_t, X_{t-j}) = \phi^j \cdot \sigma^2_X \quad (= \gamma(j))
 \]
 \[
 Corr(X_t, X_{t-j}) = \phi^j = \rho(j) \quad (= \gamma(j)/\gamma(0))
 \]
AR(1) Model

- For $\phi : |\phi| < 1$, the Wold decomposition of the $AR(1)$ model is:
 \[X_t = \mu + \sum_{j=0}^{\infty} \phi^j \eta_{t-j} \]
 - For $\phi : 0 < \phi < 1$, the $AR(1)$ process exhibits exponential mean-reversion to μ.
 - For $\phi : 0 > \phi > -1$, the $AR(1)$ process exhibits oscillating exponential mean-reversion to μ.
- For $\phi = 1$, the Wold decomposition does not exist and the process is the simple random walk (non-stationary!).
- For $\phi > 1$, the $AR(1)$ process is explosive.

Examples of $AR(1)$ Models (mean reverting with $0 < \phi < 1$)
- Interest rates (Ornstein Uhlenbeck Process; Vasicek Model)
- Interest rate spreads
- Real exchange rates
- Valuation ratios (dividend-to-price, earnings-to-price)
Second Order Moments of $AR(p)$ Processes

From the specification of the $AR(p)$ model:

$$(X_t - \mu) = \phi_1(X_{t-1} - \mu) + \phi_2(X_{t-1} - \mu) + \cdots + \phi_p(X_{t-p} - \mu) + \eta_t$$

we can write the Yule-Walker Equations ($j = 0, 1, \ldots$)

$$E[(X_t - \mu)(X_{t-j} - \mu)] = \phi_1 E[(X_{t-1} - \mu)(X_{t-j} - \mu)] + \phi_2 E[(X_{t-1} - \mu)(X_{t-j} - \mu)] + \cdots + \phi_p E[(X_{t-p} - \mu)(X_{t-j} - \mu)] + E[\eta_t(X_{t-j} - \mu)]$$

$$\gamma(j) = \phi_1 \gamma(j-1) + \phi_2 \gamma(j-2) + \cdots + \phi_p \gamma(j-p) + \delta_{0,j} \sigma^2$$

Equations $j = 1, 2, \ldots p$ yield a system of p linear equations in ϕ_j:

\[\begin{align*}
\gamma(0) &= \phi_1 \gamma(-1) + \phi_2 \gamma(-2) + \cdots + \phi_p \gamma(-p) + \delta_{0,0} \sigma^2 \\
\gamma(1) &= \phi_1 \gamma(0) + \phi_2 \gamma(-1) + \cdots + \phi_p \gamma(-p+1) + \delta_{0,1} \sigma^2 \\
&\vdots \\
\gamma(p) &= \phi_1 \gamma(p-1) + \phi_2 \gamma(p-2) + \cdots + \phi_p \gamma(0) + \delta_{0,p} \sigma^2
\end{align*}\]
Yule-Walker Equations

\[
\begin{pmatrix}
\gamma(1) \\
\gamma(2) \\
\vdots \\
\gamma(p)
\end{pmatrix}
=
\begin{bmatrix}
\gamma(0) & \gamma(-1) & \gamma(-2) & \cdots & \gamma(-(p - 1)) \\
\gamma(1) & \gamma(0) & \gamma(-1) & \cdots & \gamma(-(p - 2)) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\gamma(p - 1) & \gamma(p - 2) & \gamma(p - 3) & \cdots & \gamma(0)
\end{bmatrix}
\begin{pmatrix}
\phi_1 \\
\phi_2 \\
\vdots \\
\phi_p
\end{pmatrix}
\]

- Given estimates \(\hat{\gamma}(j), j = 0, \ldots, p\) (and \(\hat{\mu}\)) the solution of these equations are the Yule-Walker estimates of the \(\phi_j\); using the property \(\gamma(-j) = \gamma(+j), \forall j\)

- Using these in equation 0

\[
\gamma(0) = \phi_1 \gamma(-1) + \phi_2 \gamma(-2) + \cdots + \phi_p \gamma(-p) + \delta_{0,0} \sigma^2
\]

provides an estimate of \(\sigma^2\)

\[
\hat{\sigma}^2 = \hat{\gamma}(0) - \sum_{j=1}^{p} \phi_j \hat{\gamma}(j)
\]

- When all the estimates \(\hat{\gamma}(j)\) and \(\hat{\mu}\) are unbiased, then the Yule-Walker estimates apply the **Method of Moments** Principle of Estimation.
MA(q) Models

Order-q Moving-Average Model: MA(q)

\((X_t - \mu) = \theta(L)\eta_t, \text{ where}\)

\(\{\eta_t\} \text{ is } WN(0, \sigma^2) \text{ and}\)

\(\theta(L) = 1 + \theta_1 L + \theta_2 L^2 + \cdots + \theta_q L^q\)

Properties:

- The process \(\{X_t\}\) is invertible if all the roots of \(\theta(z) = 0\) are outside the complex unit circle.
- The moments of \(X_t\) are:
 \(E(X_t) = \mu\)
 \(Var(X_t) = \gamma(0) = \sigma^2 \cdot (1 + \theta_1^2 + \theta_2^2 + \cdots + \theta_q^2)\)
 \(Cov(X_t, X_{t+j}) = \begin{cases}
 0, & j > q \\
 \sigma^2 \cdot (\theta_j + \theta_{j+1}\theta_1 + \theta_{j+2}\theta_2 + \cdots + \theta_q\theta_{q-j}), & 1 < j \leq q
 \end{cases}\)
Outline

1 Time Series Analysis

- Stationarity and Wold Representation Theorem
- Autoregressive and Moving Average (ARMA) Models
- Accommodating Non-Stationarity: ARIMA Models
- Estimation of Stationary ARMA Models
- Tests for Stationarity/Non-Stationarity
Many economic time series exhibit non-stationary behavior consistent with random walks. Box and Jenkins advocate removal of non-stationary trending behavior using

Differencing Operators:

\[\Delta = 1 - L \]
\[\Delta^2 = (1 - L)^2 = 1 - 2L + L^2 \]
\[\Delta^k = (1 - L)^k = \sum_{j=0}^{k} \binom{k}{j} (-L)^j, \text{ (integral } k > 0) \]

- If the process \(\{X_t\} \) has a linear trend in time, then the process \(\{\Delta X_t\} \) has no trend.
- If the process \(\{X_t\} \) has a quadratic trend in time, then the second-differenced process \(\{\Delta^2 X_t\} \) has no trend.
Examples of Non-Stationary Processes

Linear Trend Reversion Model: Suppose the model for the time series \(\{X_t\} \) is:
\[
X_t = TD_t + \eta_t, \text{ where}
\]
- \(TD_t = a + bt \), a deterministic (linear) trend
- \(\eta_t \sim AR(1) \), i.e.,
 \[
 \eta_t = \phi \eta_{t-1} + \xi_t, \text{ where } |\phi| < 1 \text{ and }
 \{\xi_t\} \text{ is } WN(0, \sigma^2).
 \]

The moments of \(\{X_t\} \) are:
\[
E(X_t) = E(TD_t) + E(\eta_t) = a + bt
\]
\[
Var(X_t) = Var(\eta_t) = \sigma^2/(1 - \phi).
\]

The differenced process \(\{\Delta X_t\} \) can be expressed as
\[
\Delta X_t = b + \Delta \eta_t
\]
\[
= b + (\eta_t - \eta_{t-1})
\]
\[
= b + (1 - L)\eta_t
\]
Non-Stationary Trend Processes

Pure Integrated Process I(1) for \(\{X_t\} \):
\[
X_t = X_{t-1} + \eta_t, \text{ where } \eta_t \text{ is } WN(0, \sigma^2).
\]
Equivalently:
\[
\Delta X_t = (1 - L)X_t + \eta_t, \text{ where } \{\eta_t\} \text{ is } WN(0, \sigma^2).
\]
Given \(X_0 \), we can write \(X_t = X_0 + TS_t \) where
\[
TS_t = \sum_{j=0}^{t} \eta_j
\]
The process \(\{ TS_t \} \) is a **Stochastic Trend** process with
\[
TS_t = TS_{t-1} + \eta_t, \text{ where } \{\eta_t\} \text{ is } WN(0, \sigma^2).
\]
Note:
- The Stochastic Trend process is not perfectly predictable.
- The process \(\{ X_t \} \) is a **Simple Random Walk** with white-noise steps. It is non-stationary because given \(X_0 \):
 - \(Var(X_t) = t\sigma^2 \)
 - \(Cov(X_t, X_{t-j}) = (t - j)\sigma^2 \) for \(0 < j < t \).
 - \(Corr = (X_t, X_{t-j}) = \sqrt{t-j}/\sqrt{t} = \sqrt{1-j/t} \)
ARIMA(p,d,q) Models

Definition: The time series \(\{X_t\} \) follows an ARIMA\((p, d, q)\) model (“Integrated ARMA”) if \(\{\Delta^d X_t\} \) is stationary (and non-stationary for lower-order differencing) and follows an ARMA\((p, q)\) model.

Issues:

- Determining the order of differencing required to remove time trends (deterministic or stochastic).
- Estimating the unknown parameters of an ARIMA\((p, d, q)\) model.
- Model Selection: choosing among alternative models with different \((p, d, q)\) specifications.
Outline

1. Time Series Analysis
 - Stationarity and Wold Representation Theorem
 - Autoregressive and Moving Average (ARMA) Models
 - Accommodating Non-Stationarity: ARIMA Models
 - Estimation of Stationary ARMA Models
 - Tests for Stationarity/Non-Stationarity
Maximum-Likelihood Estimation

- Assume that \(\{\eta_t\} \) are i.i.d. \(N(0, \sigma^2) \) r.v.'s.
- Express the \(ARMA(p, q) \) model in state-space form.
- Apply the prediction-error decomposition of the log-likelihood function.
- Apply either or both of
 - Limited Information Maximum-Likelihood (LIML) Method
 - Condition on the first \(p \) values of \(\{X_t\} \)
 - Assume that the first \(q \) values of \(\{\eta_t\} \) are zero.
 - Full Information Maximum-Likelihood (FIML) Method
 - Use the stationary distribution of the first \(p \) values to specify the exact likelihood.
Model Selection

Statistical model selection criteria are used to select the orders \((p, q)\) of an ARMA process:

- Fit all \(ARMA(p, q)\) models with \(0 \leq p \leq p_{\text{max}}\) and \(0 \leq q \leq q_{\text{max}}\), for chosen values of maximal orders.
- Let \(\tilde{\sigma}^2(p, q)\) be the MLE of \(\sigma^2 = \text{Var}(\eta_t)\), the variance of ARMA innovations under Gaussian/Normal assumption.
- Choose \((p, q)\) to minimize one of:
 - Akaike Information Criterion
 \[
 AIC(p, q) = \log(\tilde{\sigma}^2(p, q)) + 2\frac{p+q}{n}
 \]
 - Bayes Information Criterion
 \[
 BIC(p, q) = \log(\tilde{\sigma}^2(p, q)) + \log(n)\frac{p+q}{n}
 \]
 - Hannan-Quinn Criterion
 \[
 HQ(p, q) = \log(\tilde{\sigma}^2(p, q)) + 2\log(\log(n))\frac{p+q}{n}
 \]
Outline

1. Time Series Analysis
 - Stationarity and Wold Representation Theorem
 - Autoregressive and Moving Average (ARMA) Models
 - Accommodating Non-Stationarity: ARIMA Models
 - Estimation of Stationary ARMA Models
 - Tests for Stationarity/Non-Stationarity
Dickey-Fuller (DF) Test: Suppose \(\{ X_t \} \) follows the AR(1) model

\[
X_t = \phi X_{t-1} + \eta_t, \text{ with } \{ \eta_t \} \text{ a WN}(0, \sigma^2).
\]

Consider testing the following hypotheses:

- \(H_0: \phi = 1 \) (unit root, non-stationarity)
- \(H_1: |\phi| < 1 \) (stationarity)

(“Autoregressive Unit Root Test”)

- Fit the AR(1) model by least squares and define the test statistic:

\[
t_{\phi=1} = \frac{\hat{\phi} - 1}{se(\hat{\phi})}
\]

where \(\hat{\phi} \) is the least-squares estimate of \(\phi \) and \(se(\hat{\phi}) \) is the least-squares estimate of the standard error of \(\hat{\phi} \).

- If \(|\phi| < 1 \), then \(\sqrt{T}(\hat{\phi} - \phi) \xrightarrow{d} N(0, (1 - \phi^2)) \).

- If \(\phi = 1 \), then \(\hat{\phi} \) is super-consistent with rate \((1/T) \), \(\sqrt{T}t_{\phi=1} \) has DF distribution.
References on Tests for Stationarity/Non-Stationarity*

Unit Root Tests (H_0: Nonstationarity)
- Dickey and Fuller (1979): Dickey-Fuller (DF) Test
- Said and Dickey (1984): Augmented Dickey-Fuller (ADF) Test
- Phillips and Perron (1988) Unit root (PP) tests

Stationarity Tests (H_0: stationarity)

* Optional reading