Euler-Bernoulli Beams: Bending, Buckling, and Vibration

David M. Parks

2.002 Mechanics and Materials II
Department of Mechanical Engineering
MIT
February 9, 2004
Linear Elastic Beam Theory

• Basics of beams
 – Geometry of deformation
 – Equilibrium of “slices”
 – Constitutive equations

• Applications:
 – Cantilever beam deflection
 – Buckling of beams under axial compression
 – Vibration of beams
Beam Theory:
Slice Equilibrium Relations

- $q(x)$: distributed load/length
- $N(x)$: axial force
- $V(x)$: shear force
- $M(x)$: bending moment

Axial force balance:

$$0 = N(x + dx) - N(x) \Rightarrow N(x) = \text{constant}$$

Transverse force balance:

$$0 = q(x)dx + V(x + dx) - V(x)$$
$$= q(x)dx + \left(V(x) + V'(x)dx + o(dx) \right) - V(x)$$
$$= dx \left[V'(x) + q(x) \right] \Rightarrow$$
$$0 = V'(x) + q(x) \quad \text{CDL(3.11)}$$

Moment balance about ‘x+dx’:

$$0 = V(x)dx + M(x + dx) - M(x) - (q(x)dx)dx$$
$$= V(x)dx + \left(M(x) + M'(x)dx \right) - M(x) - (q(x)dx)dx/2$$
$$= dx \left[M'(x) + V(x) - q(x)dx/2 \right] \Rightarrow$$
$$0 = M'(x) + V(x) \quad \text{CDL(3.12)}$$
Euler-Bernoulli Beam Theory: Displacement, strain, and stress distributions

Beam theory assumptions on spatial variation of displacement components:

\[
 u(x, y, z) = u_0(x) - yv'(x) \\
 v(x, y, z) = v(x) \\
 w(x, y, z) = 0
\]

Axial strain distribution in beam:

\[
 \epsilon_{xx}(x, y, z) \equiv \frac{\partial u(x, y, z)}{\partial x} = u_0'(x) - yv''(x) \\
 \equiv \epsilon_0(x) - y\kappa(x)
\]

1-D stress/strain relation:

\[
 \sigma_{xx} = E\epsilon_{xx}
\]

Stress distribution in terms of Displacement field:

\[
 \sigma_{xx}(x, y, z) = E \left(\epsilon_0(x) - y\kappa(x) \right)
\]

Axial strain varies linearly Through-thickness at section ‘x’
Slice Equilibrium: Section Axial Force \(N(x) \) and Bending Moment \(M(x) \) in terms of Displacement fields

\(\mathbf{N}(x) \): \(x \)-component of force equilibrium on slice at location ‘\(x \)’:

\[
N(x) \equiv \int \sigma_{xx}(x, y, z) \, dA(y, z) \\
= \int E \{\varepsilon_0(x) - y\kappa(x)\} \, dA \\
= EA\varepsilon_0(x) - E\kappa(x) \int y \, dA.
\]

\(\mathbf{M}(x) \): \(z \)-component of moment equilibrium on slice at location ‘\(x \)’:

\[
M(x) \equiv \int -y \sigma_{xx}(x, y, z) \, dA(y, z) \\
= \int E \{\varepsilon_0(x) + y^2\kappa(x)\} \, dA \\
= -E\varepsilon_0(x) \int y \, dA + E\kappa(x)I
\]

where \(I \equiv \int y^2 \, dA \) is area moment of inertia of cross section
Centroidal Coordinates

\[\bar{y} = \frac{1}{A} \int y \, dA \]

choice: \(\bar{y} \equiv 0 \Rightarrow \int y \, dA = 0 \)

Simplifications:

\[
N(x) = EA\varepsilon_0(x) = EAu'_0(x) \\
M(x) = EI\kappa(x) = EIV''(x)
\]

Note: \(I \) is centroidal area moment of inertia:

\[I \equiv \int y^2 \, dA \]
Tip-Loaded Cantilever Beam: Equilibrium

Free body diagrams:

• statically determinant: support reactions R, M_0 from equilibrium alone
• reactions “present” because of $x=0$ geometrical boundary conditions $v(0)=0$; $v'(0)=\phi(0)=0$

• general equilibrium equations (CDL 3.11-12) satisfied

How to determine lateral displacement $v(x)$; especially at tip ($x=L$)?
Exercise: Cantilever Beam Under Self-Weight

- Weight per unit length: \(q_0 \)
- \(q_0 = \rho Ag = \rho bhg \)

Free body diagrams:

Find:
- Reactions: \(R \) and \(M_0 \)
- Shear force: \(V(x) \)
- Bending moment: \(M(x) \)
Tip-Loaded Cantilever: Lateral Deflections

Curvature / moment relations:

\[v''(x) = \frac{1}{EI} M(x) = \frac{1}{EI} \left(P(L - x)\right) \Rightarrow \]

\[v'(x) = \frac{P}{EI} \left(Lx - x^2/2 + C_1\right) \Rightarrow \]

\[v(x) = \frac{P}{EI} \left(Lx^2/2 - x^3/6 + C_1x + C_2\right) \]

Tip deflection and rotation:

\[\Delta \equiv v(L) = \frac{PL^3}{3EI} \]

\[\Phi \equiv v'(L) = \frac{PL^2}{2EI} \]

Geometric boundary conditions:

\[\phi(0) = v'(0) = 0 \Rightarrow C_1 = 0 \]

\[v(0) = 0 \Rightarrow C_2 = 0 \]

\[v(x) = \frac{Px^2}{6EI} (3L - x) \]

Stiffness and modulus:

\[k \equiv \frac{P}{\Delta} = \frac{3EI}{L^3} \]

\[E = \frac{kL^3}{3I} = \frac{PL^3}{3I\Delta} \]
Tip-Loaded Cantilever: Axial Strain Distribution

strain field (no axial force):

\[\varepsilon_{xx}(x, y) = -yv''(x) \]

\[= -\frac{yM(x)}{EI} \]

top/bottom axial strain distribution:

\[\varepsilon_{xx}^{TOP}(x) = -\frac{6P(L-x)}{bh^2E} \quad (y = h/2) \]

\[\varepsilon_{xx}^{BOTTOM}(x) = \frac{6P(L-x)}{bh^2E} \quad (y = -h/2) \]

\[I_{rectangle} = \frac{bh^3}{12} \]

strain-gauged estimate of E:

\[E = \frac{6P(L-x)}{bh^2\varepsilon_{xx}^{BOTTOM}(x)} = \frac{6P(L-x)}{bh^2\varepsilon_{xx}^{TOP}(x)} \]
Euler Column Buckling: Non-uniqueness of deformed configuration

Free body diagram (note: evaluated in deformed configuration):

\[\sum M_Z = 0 \Rightarrow M(x) + P v(x) = 0 \]

Moment/curvature:

\[M(x) = EI \kappa(x) = EI v''(x) \]

Ode for buckled shape:

\[
\begin{align*}
0 &= M(x) + P v(x) \\
&= EI v''(x) + P v(x) \\
0 &= v''(x) + \frac{P}{EI} v(x) \\
&\equiv v''(x) + k^2 v(x)
\end{align*}
\]

Note: linear 2nd order ode; Constant coefficients (but parametric: \(k^2 = P/EI \))
Euler Column Buckling, Cont.

ode for buckled shape:

\[0 = v''(x) + k^2 v(x) \]

general solution to ode:

\[v(x) = C_1 \sin kx + C_2 \cos kx \]

boundary conditions:

\[v(0) = 0 \Rightarrow C_2 = 0 \]

\[v(L) = 0 \Rightarrow C_1 \sin kL = 0 \Rightarrow \]

\[C_1 = 0 \text{ (trivial) or } \sin kL = 0 \]

**buckling-based estimate of } E:}

\[E_{\text{pinned/pinned}} = \frac{P_{\text{crit}} L^2}{\pi^2 I} \]

parametric consequences:

Non-trivial buckled shape only when

\[\sin kL = 0 \Rightarrow kL = n\pi \]

\[k^2 = (n\pi/L)^2 \]

\[P = EI k^2 = \frac{n^2 EI \pi^2}{L^2} \]

\[P_{\text{crit}}(n = 1) = \frac{\pi^2 EI}{L^2} \]
Euler Column Buckling: General Observations

• buckling load, P_{crit}, is proportional to EI/L^2

• proportionality constant depends strongly on boundary conditions at both ends:

 • the more kinematically restrained the ends are, the larger the constant and the higher the critical buckling load (see Lab 1 handout)

• safe design of long slender columns requires adequate margins with respect to buckling

• buckling load may occur at a compressive stress value ($\sigma = P/A$) that is less than yield stress, σ_y
Euler-Bernoulli Beam Vibration

assume time-dependent lateral motion:
\[v(x, t) = \bar{v}(x) \sin \omega t \]

lateral velocity of slice at ‘x’:
\[\frac{\partial v(x, t)}{\partial t} \equiv \dot{v}(x, t) = \omega \bar{v}(x) \cos \omega t \]

lateral acceleration of slice at ‘x’:
\[\frac{\partial^2 v(x, t)}{\partial t^2} \equiv \ddot{v}(x, t) = -\omega^2 \bar{v}(x) \sin \omega t \]

mass of dx-thickness slice:
\[dm = dx \rho A \]

linear momentum balance (Newton):
\[\sum F_y = dm \ddot{v}(x, t) \Rightarrow \]
\[0 = dx \left(M''(x, t) - \rho \omega^2 A \bar{v}(x) \sin \omega t \right) \]

net lateral force (q(x,t)=0):
\[\sum F_y = dx \frac{\partial V(x, t)}{\partial x} \equiv dx V'(x, t) \]

moment balance:
\[0 = \frac{\partial M(x, t)}{\partial x} + V(x, t) \equiv M'(x, t) + V(x, t) \Rightarrow \]
\[0 = M''(x, t) + V'(x, t) \]
Euler-Bernoulli Beam Vibration, Cont.

linear momentum balance:
\[0 = M''(x, t) - \rho \omega^2 A \ddot{v}(x) \sin \omega t \]

moment/curvature:
\[M(x, t) = EI \kappa(x, t) = EI \dddot{v}(x) \sin \omega t \]

ode for mode shape, \(v(x) \), and vibration frequency, \(\omega \):
\[0 = M''(x, t) - \rho \omega^2 A \ddot{v}(x) \sin \omega t \]
\[= \sin \omega t \left(EI \dddot{v}(x) - \rho \omega^2 A \ddot{v}(x) \right) \]
\[= \sin \omega t \left(\dddot{v}(x) - \frac{\rho \omega^2 A \ddot{v}(x)}{EI} \right) \]
\[\equiv \sin \omega t \left(\dddot{v}(x) - \beta^4 \ddot{v}(x) \right) \Rightarrow \]
\[0 = \dddot{v}(x) - \beta^4 \ddot{v}(x) \]

general solution to ode:
\[\dddot{v}(x) = A_1 \sin \beta x + A_2 \cos \beta x + A_3 \sinh \beta x + A_4 \cosh \beta x \]
Euler-Bernoulli Beam Vibration, Cont(2)

general solution to ode:

\[\ddot{v}(x) = A_1 \sin \beta x + A_2 \cos \beta x + A_3 \sinh \beta x + A_4 \cosh \beta x \]

pinned/pinned boundary conditions:

\[\ddot{v}(0) = 0 \Rightarrow A_2 + A_4 = 0 \]
\[\ddot{v}''(0) = 0 \Rightarrow \beta^2 (-A_2 + A_4) = 0 \]
\[\ddot{v}(L) = 0 \Rightarrow A_1 \sin \beta L + A_3 \sinh \beta L = 0 \]
\[\ddot{v}''(L) = 0 \Rightarrow \beta^2 (-A_1 \sin \beta L + A_3 \sinh \beta L) = 0 \]

pinned/pinned restricted solution:

\[\beta \neq 0; \quad A_2 = A_3 = A_4 = 0; \]

\[A_1 \sin \beta L = 0 \Rightarrow \]

\[A_1 = 0 \text{ (trivial), OR} \sin \beta L = 0 \Rightarrow \beta L = n\pi \]

Solution (n=1, first mode):

\[A_1: \text{‘arbitrary’ (but small)} \]
\[\text{vibration amplitude} \]

\[\beta_1 = \pi / L \Rightarrow \]

\[\ddot{v}(n=1) (x, t) = A_1 \sin(\pi x / L) \sin \omega_1 t \]

\[\beta_1^4 = (\pi / L)^4 = \omega_1^2 \rho A / EI \Rightarrow \]

\[\omega_1 = \sqrt{\frac{EI \pi^4}{\rho AL^4}} \]

\(\tau_1: \text{period of first mode} \)

\[\tau_1 = \frac{2\pi}{\omega_1} \]