Using MATLAB and Programming to Simulate Dynamical Systems
<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture</th>
<th>Content</th>
<th>Homework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 8</td>
<td>1</td>
<td>Overview, MATLAB Syntax</td>
<td>HW1 out</td>
</tr>
<tr>
<td>Feb 15</td>
<td>2</td>
<td>Programming I: Conditionals and Loops</td>
<td>HW1 due-HW2 out</td>
</tr>
<tr>
<td>Feb 22</td>
<td>3</td>
<td>In class exercise: Bouncing ball I</td>
<td>HW2 due-HW3 out</td>
</tr>
<tr>
<td>Feb 29</td>
<td>4</td>
<td>In class exercise: Bouncing ball II</td>
<td></td>
</tr>
<tr>
<td>Mar 7</td>
<td>5</td>
<td>Programming II: Functions</td>
<td>HW3 due-HW4 out</td>
</tr>
<tr>
<td>Mar 14</td>
<td>6</td>
<td>In class exercise: recursion and Tower of Hanoi</td>
<td>HW4 due-HW5 out</td>
</tr>
<tr>
<td>Mar 21</td>
<td>7</td>
<td>Algorithm and ODE</td>
<td>HW5 due-HW6 out</td>
</tr>
<tr>
<td>April 4</td>
<td>8</td>
<td>In class exercise: mass-spring-damper dynamics</td>
<td>HW6 due</td>
</tr>
<tr>
<td>April 11</td>
<td>9</td>
<td>In class exercise: Roller disk</td>
<td>HW7 out</td>
</tr>
<tr>
<td>April 18</td>
<td>10</td>
<td>In class exercise: Nonlinear dynamics project I</td>
<td>HW7 due-HW8 out</td>
</tr>
<tr>
<td>April 25</td>
<td>11</td>
<td>In class exercise: Nonlinear dynamics project II</td>
<td></td>
</tr>
<tr>
<td>May 2</td>
<td>12</td>
<td>Vibration and eigenvalue problems</td>
<td>HW8 due-HW9 out</td>
</tr>
<tr>
<td>May 9</td>
<td>13</td>
<td>Finite element and building vibration</td>
<td>HW9 due</td>
</tr>
</tbody>
</table>
Computation

1 + 2 = 3

\[
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix} =
\begin{bmatrix}
7 & 10 \\
15 & 22
\end{bmatrix}
\]

Programming

X = 0

X = X + 0.1

X + 3 < 0.1

Output x

No

Yes
Modeling Bouncing Ball with Nonlinear Air Drag

Cite as: Peter So, course materials for 2.003J / 1.053J Dynamics and Control I, Fall 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
Tower of Hanoi
ODE and Simulating Dynamics Numerically
Simulating Dynamics of Mechanical Systems

\[F = F_0 \cdot \sin(wt) \]

Cite as: Peter So, course materials for 2.003J / 1.053J Dynamics and Control I, Fall 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
Simulating Dynamics of Nonlinear Systems

Choice of projects: (1) pendulum with elastic spring, (2) Population dynamics for wolfs and rabbits, (3) ?
MATLAB Programming – Eigenvalue Problems and Mechanical Vibration

\[A \cdot x = \lambda x \quad (A - \lambda I) \cdot x = 0 \]

Cite as: Peter So, course materials for 2.003J / 1.053J Dynamics and Control I, Fall 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].
Modeling the Swinging of a Building in the Wind