2.007 – Design and Manufacturing I

Microcomputers, Programming, Electronics, and Sensors

Images removed due to copyright restrictions. Please see
http://media.digikey.com/photos/Honeywell%20Photos/BZ-2RW82.jpg
http://media.digikey.com/photos/Parallax%20Photos/MFG_30056.jpg
http://www2.gpmd.com/imagem/f/mfutl0832.jpg

Dan Frey
31 MAR 2009
The Homework Board

- Attachment for a serial cable for communicating with a computer (download programs from computer to BS2 and send DEBUG data from BS2 to your screen).
- Attachment place for a 9V “transistor battery”
- Tie down holes for battery
- BASIC Stamp 2 (BS2) PIC, EEPROM, and voltage regulator
- Indicator light “ON” when a program is running
- Button to reset your program
- 16 resistors at 220Ω attached to each I/O pin
- 16 headers to which you can connect to I/O pins through the built in 220Ω resistors
- Vdd – a 5V regulated supply
- Vin – a connection to the “+” battery terminal at 9V unregulated supply
- Vss – a connection to the “-“ battery terminal which serves as ground
- Breadboard (solderless prototyping board) with 17 rows and two columns each with 5 electrically interconnected “clips.” Connections are horizontal rows separated by the trough.

Each pin sources at most 20 milli Amps
What happens?

NOTE: As we discussed in class, the motor will turn accelerating to its no load speed for 5V. Since the connection is to Vdd (not Vin) the motor “sees” 5V from the regulated supply, thus it is essentially independent of the current draw as long as the 9V battery is not dragged down to below 5V. This particular regulator can’t “buck” the voltage back up.
The Basic Stamp Editor

' {$STAMP BS2}
' {$PBASIC 2.5}
DEBUG "Hello World!", CR
PBASIC Programming Language

- `name VAR size` (BIT, NIB, BYTE, WORD)
- IF … THEN
- FOR … NEXT
- GOTO `label` (define `label` like -- Loop:)
- PULSOUT `pin, period` (2 μsec per unit)
- PAUSE `period` (1 millisecond per unit)
- DEBUG `OutputData` (to your PC screen)
Make an LED Flash

Just a jumper wire is needed because a 220Ω resistor is built into the pins of the Homework board.

DO
HIGH 14
PAUSE 500
LOW 14
PAUSE 500
LOOP

The unit of the PAUSE command is milliseconds, so this line will result in a ½ sec pause.
NOTE: As we discussed in class, the motor will turn accelerating to its no load speed for 5V. Since the connection is to Vdd (not Vin) the motor “sees” 5V from the regulated supply, thus it is essentially independent of the current draw as long as the 9V battery is not dragged down to below 5V. This particular regulator can’t “buck” the voltage back up.
What happens?

NOTE: Same as the last slide. The proto board area makes connections between the rows of 5 “clips”. For more background, see http://en.wikipedia.org/wiki/Breadboard
What happens?

NOTE: Nothing happens -- unlike the last slide. The proto board area does not make connections across the “trough” (unless you make such a connection with a wire).
Memory and Variable types

Mouse VAR BIT ' Mouse is a variable that takes values 0 or 1
Cat VAR NIB ' Cat is a variable that uses four bits
'NOTE: The term “NIB” is short for a “Nibble” which is a small Byte
Dog VAR BYTE ' Dog is a variable that uses eight bits
Horse VAR Word ' Horse is a variable that uses 16 bits
Dog = 250 ' Assign a value to the byte sized variable
DEBUG ? Dog ' Display the result to the screen
Dog = 260 ' Try to assign a value larger than the byte data type can hold
DEBUG ? Dog ' Display the result to the screen
Making an LED Blink Increasingly Faster

Delay VAR Nib
FOR Delay= 1 TO 15
HIGH 14
PAUSE 200-(Delay*10)
LOW 14
PAUSE 200-(Delay*10)
NEXT

NOTE: The microcomputer will place the LED on high for 0.2 seconds and low for 0.2 sec and ramp down the duration to 0.05 sec as the loop executes. The LED will at first be blinking noticeably, but later just appear as if it’s dimmer as it’s seeing 2.5V rather than 5V sometimes and OV other times. This is pulse width modulation (PWM) of a source.
What Happens?

Delay VAR Nib
FOR Delay = 1 TO 15
HIGH 14
PAUSE 200-(Delay*10)
LOW 14
PAUSE 200-(Delay*10)
NEXT

NOTE: Basically nothing. The pins of the Stamp can only source 20milli Amps which cannot turn this motor at all. Maybe a very nice motor could turn at a slow rate. This motor costs pennies. Don’t expect too much.
Text removed due to copyright restrictions. Please see
Checking the State of a Switch

DO
IF (IN3 = 1) THEN
 DEBUG HOME, "YES! Switch pressed."
ELSE
 DEBUG HOME, "NO! Switch is open."
ENDIF
PAUSE 250
LOOP

NOTE: There was a good question in class. Why do you need a 10kOhm resistor? Could a plain old wire do the job in its place? The item in question is functioning as a "pull up" resistor. A good explanation can be found at http://en.wikipedia.org/wiki/Pull-up_resistor
Servo Motors

- Actuators that attain and hold a commanded position
- The type you have are commonly used in radio controlled cars and planes

Note the specifications listed on the box.

- ground (black)
- power (red)
- signal (yellow)
Pulse Width Modulation (PWM)

- The duration of the pulse is interpreted as a commanded position
- PULSOUT pin, period (2\(\mu\)sec per unit)
- PAUSE period (1mili sec per unit)

Voltage on yellow wire

- 920 \(\mu\)s = full counterclockwise
- 1520 \(\mu\)s = centered
- 2120 ms = full clockwise

- duty cycle: 14 to 25? milli seconds
Electronics Within the Servo

- Receive the commanded position
- Sense the position of the output shaft
- Supply voltage to the motor (either polarity) depending on the error

The back of a small, DC, permanent magnet electric motor
Driving a Servo with the Stamp

DO
Reps VAR Byte
FOR Reps=1 TO 20
 PULSOUT 3, 750
 PAUSE 16
NEXT
FOR Reps=1 TO 20
 PULSOUT 3, 1100
 PAUSE 16
NEXT
LOOP

If I declare Reps as type Nib, what happens?
1) error message generated
2) program never leaves the first FOR loop
3) program leaves each FOR loop sooner
4) no difference
Driving a Servo with the Stamp

DO Reps VAR Byte
FOR Reps=1 TO 20
PULSOUT 3, 750 PAUSE 16
NEXT
FOR Reps=1 TO 20
PULSOUT 3, 1100 PAUSE 16
NEXT
LOOP

If I declare Reps as type Nib, what happens?
1) error message generated
2) program never leaves the first FOR loop
3) program leaves each FOR loop sooner
4) no difference

NOTE: The answer is “2”, the program never leaves the first FOR loop. A variable declared as a Nib has 4 bits and can only represent integers 0 through 15. When the FOR loop increments and Rep=15, there will be an overflow and Rep will go to zero. The BASIC stamp is very simple and so does not do much to help deal with run time errors like this. Other programming environments like Python will handle the error differently.
Radios

Image removed due to copyright restrictions. Please see

Throttle (ch3)

FM transmission

Elevator (ch2)

Rudder (ch 4)

Aileron (ch 1)

Please see http://www2.gpmd.com/image/t/towj41.jpg
Getting Signals into the Stamp

throttle VAR Word
rudder VAR Word
DO
PULSIN 15, 1, throttle
PULSIN 14, 1, rudder
DEBUG home, ? throttle
DEBUG ? rudder
PAUSE 200
LOOP
An Issue with Arithmetic

throttle VAR Word
rudder VAR Word
result VAR Word

DO
PULSIN 15, 1, throttle
PULSIN 14, 1, rudder
DEBUG home, ? throttle
DEBUG ? rudder
result=throttle-2*rudder
DEBUG ? result
PAUSE 200
LOOP

Get in the habit of using brackets to indicate desired order of operations
An Issue with Arithmetic

throttle VAR Word
rudder VAR Word
result VAR Word

result=throttle-2*rudder
DEBUG ? result

PAUSE 200
LOOP

DO
PULSIN 15, 1, throttle
PULSIN 14, 1, rudder
DEBUG home, ?
DEBUG ? rudder

NOTE: As discussed in class, the DEBUG here prints out a large number like 34000 because it executes the commands left to right. We are all used to languages assuming the usual priority of operators like first exponents, then multiplications, then addition. So watch out and use parentheses liberally.
Another Issue with Arithmetic

throttle VAR Word
rudder VAR Word
result VAR Word

DO
PULSIN 15, 1, throttle
PULSIN 14, 1, rudder
DEBUG home, ? throttle
DEBUG ? rudder

result = (throttle / rudder) * 10
DEBUG ? result

PAUSE 200
LOOP

Intermediate results are stored in the same kind of variable as the final result. Watch out for underflow.
Another Issue with Arithmetic

```
throttle VAR Word
rudder VAR Word
result VAR Word

DO
PULSIN 15, 1, throttle
PULSIN 14, 1, rudder
DEBUG home, ? throttle
DEBUG ? rudder
result=(throttle/rudder)*10
DEBUG ? result
PAUSE 200
LOOP
```

Intermediate results are stored in the same kind of variable as the final result. Watch out for underflow.

NOTE: As discussed in class, the DEBUG here prints out 0 or 10 skipping intermediate values we wanted like 7. We are all used to languages supporting real values. But this language represents all intermediate results as integers, so 740/760 is zero and 760/740 is 1.
Expanding the Servo Range

throttle VAR Word
response VAR Word
DO
PULSIN 15, 1, throttle
DEBUG home, ? throttle
IF (throttle>500) AND (throttle<1000) THEN
response=((throttle-750)*2)+750
ELSE
response=throttle
ENDIF
PULSOUT 14, response
PAUSE 10
LOOP

Image removed due to copyright restrictions. Please see http://www.modelimport.com/marcas/futaba/Receptores/41007902%20R168DF.jpg
Expanding the Servo Range

throttle VAR Word
response VAR Word
DO
PULSIN 15, 1,throttle
DEBUG home, ? throttle
IF (throttle>500) AND (throttle<1000) THEN
response=(((throttle-750)*2)+750
ELSE
response=throttle
ENDIF
PULSOUT 14, response
PAUSE 10
LOOP

NOTE: I also purchased “servo stretcher” devices so you don’t necessarily have to do what on this slide. Still, you may want to do it if you’re using the HW board anyway or if you want to mix signals or want the machine to operate autonomously sometimes or just don’t want the hassle of sharing electronic modules.
Switching On/Off a Load

The symbolic representation of the transistor
How the transistor (as packaged) looks literally

C = collector
B = base
E = emitter

Image from Wikimedia Common, http://commons.wikimedia.org
H Bridge

• Reversible control of a load such as a DC motor

Image removed due to copyright restrictions. Please see http://commons.wikimedia.org/wiki/File:H_bridge_operating.svg
Running a Motor with Relays

Figure by MIT OpenCourseWare.
How Would I Make a Reversible Control?

NOTE: The practice exam solution nearly gives the solution, but not quite.
Sensors

• Contact (mechanical)

• Proximity (optical)

• Range (acoustic)

• Force (piezo)
Force Measurement

• “piezoresistive”
 – (NOT piezoelectric)

Image removed due to copyright restrictions. Please see
http://media.digikey.com/photos/Parallax%20Photos/MFG_30056.jpg
RC PIN 7
result VAR Word
DO
HIGH RC ' charge the cap
PAUSE 1 ' for 1 ms
RCTIME RC, 1, result ' measure RC discharge time --the arguments are PIN, state (1=diagram “a”), and variable
DEBUG HOME, DEC result ' display value
PAUSE 50
LOOP
Acoustic Ranging/Detection

- Ultrasonic pulse
- Distance-to-target is by measuring the time required for echo
Next Steps

• Thursday 2 April
 – No lecture
 – Lab times that day instead

• Tuesday 7 April
 – Lecture on sensors and batteries
 – HW#3 is due!