Monte Carlo and Grid-Based Techniques for Stochastic Simulation

In this problem you will compare the performance of random vs. regular sampling on a specific stochastic dynamics problem.

The system we are considering is a simple rotary mass, controlled by a motor:

\[J \ddot{\phi} = \tau = k_i i, \]

where \(J \) is the mass moment of inertia, \(\phi \) is its angular position, \(\tau \) is the control torque, \(k_i \) is the torque constant of the motor, and \(i \) is the electrical current applied. While this is a simple control design problem for given values of \(J \) and \(k_i \), the situation we study here is when these are each only known within a range of values. In particular, \(J \) is described as a uniform random variable in the range \([5, 15] kg \cdot m^2\), and \(k_i \) is a uniform random variable in the range \([4, 6] Nm/A\). The basic question we ask is: if the control system is designed for a nominal condition, say \(J = 10 kg \cdot m^2 \) and \(k_i = 5 Nm/A \), how will the closed-loop system vary in its response, for all the possible \(J \) and \(k_i \)?

This is a question of stochastic simulation, that is, finding the statistics of a function output, given the statistics of its input. The code fragment provided below applies Monte Carlo and grid-based approaches to find the mean and variance of the function \(\cos(y) \), when \(y \) is uniformly distributed in the range \([2, 5]\). Try running this a few times and notice the effects of changing \(N \). The grid-based approach is clearly giving a good result with far less work than MC - for this example with only one random dimension. In general, the grid-based methods suffer greatly as the \(d \) dimension increases; for trapezoidal integration, the error goes as \(1/N^{2/d} \), whereas for Monte Carlo it is simply \(1/N^{1/2} \) for any \(d \)!

1. For the nominal system model (as above) design a proportional-derivative controller so that the closed-loop step response reaches the commanded angle for the first time in about one second and the maximum overshoot is twenty percent. The closed-loop system equation is

\[
J \ddot{\phi} = k_i (-k_p (\phi - \phi_{desired}) - k_d \dot{\phi}) \\
J \ddot{\phi} + k_i k_d \dot{\phi} + k_i k_p \phi = k_i k_p \phi_{desired}.
\]

Remember that if you write the left-hand side of the equation as \(\ddot{\phi} + 2 \zeta \omega_n + \omega_n^2 \), you can tune this up quite easily because the overshoot scales directly with damping ratio \(\zeta \), and you can then adjust \(\omega_n \) to get the right rise time. Show a plot of the step response and list your two gains \(k_p \) and \(k_d \).

The step response for the nominal system is shown, along with the "four corners" of the parameter space, that is, at the max and min combinations of \(J \) and \(k_i \). The gains I used are derived from \(\zeta = 0.455 \) and \(\omega_n = 2.3 rad/s \); they are \(k_p = 10.58 \) and \(k_d = 4.19 \).

2. Keeping your controller for the nominal system, use the Monte Carlo technique to calculate the mean and the variance of the overshoot \(z \), over the random domain that
clear all;
N = 1000; \% how many trials to run

\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
of \bar{z} and $\text{var}(z)$ in only a hundred or so trials!

4. Comparing the curves you obtained, which is the superior technique for this problem, and how can you tell?

 The grid!

5. Taking your highest-fidelity result for \bar{z} (probably the grid-based calculation with high N) as truth, you can calculate the apparent errors in \bar{z} for each method, as a function of N. Making a log-log plot of the absolute values of these errors, can you argue that the error scaling laws $1/N^{1/2}$ (MC) and $1/N^{2/d} = 1/N$ (grid) hold?

 See the last plot. The thin lines indicate trends for $N^{-1/4}, N^{-1/2}, N^{-3/4}, N^{-1}, N^{-5/4}$. The MC points are scattered but generally fit the $N^{-1/2}$ line. The grid data fit the N^{-1} line, and since the dimension is two, it all works out.
The diagram shows a comparison between Monte Carlo and Uniform Grid techniques for stochastic simulation. The y-axis represents \(\text{var}(z) \times 10^{-3} \), and the x-axis represents the number of samples \(N \). The graph illustrates how the variance changes with increasing sample size for both methods.
Error, Relative to Highest-Fidelity Grid Result

Monte Carlo
Uniform Grid
clear all;

global kp kd J kt;

Jl = 5 ; Ju = 15 ; % lower and upper values of the MMOI
ktl = 4 ; ktu = 6 ; % lower and upper values of torque constant

zeta = .455 ; % set the CL damping ratio and natural frequency
wn = 2.3 ;

tfinal = 4 ; % final time for all simulations

odeset('AbsTol',1e-4, 'RelTol',1e-2); % lower the accuracy a bit = faster

% first, show that the gains achieve the desired step response with
% the nominal system

J = (Jl + Ju)/2 ; % nominal values = midpoints
kt = (ktl + ktu)/2 ;

kp = J*wn^2/kt ; % control gains - work these out for the nominal
kd = 2*zeta*wn*J/kt ; % case and then leave them alone

[t,s] = ode45('MCvsGridDeriv',[0 tfinal],[0 0]);

figure(1);clf;hold off;
plot(t,s(:,2),'LineWidth',2);
grid;
xlabel('time, seconds');
ylabel('\phi, radians');

% also run the four corners to make sure the time scale is about right

J4corners = [Jl Jl Ju Ju];
kt4corners = [ktu ktl ktl ktu] ;
figure(1);hold on;
for i = 1:4,
J = J4corners(i);
k = k4corners(i);
[t,s] = ode45('MCvsGridDeriv',[0 tfinal],[0 0]);
plot(t,s(:,2),('--'))
end;
title('Nominal and Four-Corners Step Responses');
pause;

%%%
% do the MC runs
%%%

% Nvec carries the sizes of the ensembles for which we will do statistics
Nvec = [1,2,5,10,20,50,100,200,500,1000,2000,5000];

% Note that as written, we do just the largest ensemble, and then
% use portions of it for the statistics

tic;
for i = 1:max(Nvec),
 J = (Ju-Jl)*rand + Jl; % generate random J in the domain
 k = (ktu-ktl)*rand + ktl; % generate random k in the domain
 [t,s] = ode45('MCvsGridDeriv',[0 tfinal],[0 0]);
 z(i) = max(s(:,2)-1); % get the overshoot
 if rem(i,100) == 0,
 disp(sprintf('Done with %d/%d', i,max(Nvec)));
 end;
end;
toc;

% calculate the mean and variance for subsets given by Nvec
for k = 1:length(Nvec);
 meanzMC(k) = mean(z(1:Nvec(k)))
 varzMC(k) = var(z(1:Nvec(k)),1)
end;

figure(2);clf;hold off;
semilogx(Nvec,meanzMC,'.-','LineWidth',2);
a=axis; axis([min(Nvec) max(Nvec) a(3) a(4)]);
grid;

figure(3);clf;hold off;
semilogx(Nvec,varzMC,'.-','LineWidth',2);
a=axis; axis([min(Nvec) max(Nvec) a(3) a(4)])
grid;

pause(.1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% do the grid runs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% N1vec is the set of (one-dimension) ensemble sizes for which we will
% compute statistics. Note we will use N1 = N2 so that the total number
% of evaluations is N = N1 * N2
N1vec = [1 2 3 4 7 10 14 22 32 45 71];

% Most of the grids don’t overlap, so we just use the brute force - do
% all the ensembles and their statistics independently. It’s more
% expensive than what we did for MC tic;
for k = 1:length(N1vec),
 clear z;
 for i = 1:N1vec(k),
 for j = 1:N1vec(k),
 J = J1 + (Ju-J1)/N1vec(k)/2 + (i-1)*(Ju-J1)/N1vec(k) ;
 kt = ktl + (ktu-ktl)/N1vec(k)/2 + (j-1)*(ktu-ktl)/N1vec(k);
 [t,s] = ode45('MCvsGridDeriv',[0 tfinal],[0 0]);
 z(i,j) = max(s(:,2)-1);
 end;
 end;

 meanzGrid(k) = mean(mean(z)); % the mean is easy...
% but the variance calculation takes a little more attention
 sumsq = 0;
 for i = 1:N1vec(k),
 for j = 1:N1vec(k),
 sumsq = sumsq + (z(i,j) - meanzGrid(k))^2 ;
 end;
 end;
 varzGrid(k) = sumsq / N1vec(k)^2 ;

 disp(sprintf('Done with %d/%d', sum(N1vec(1:k).^2),sum(N1vec.^2)))
end;
 toc;

figure(2);hold on;
semilogx(N1vec.^2,meanzGrid,'r','LineWidth',2);
axis('auto');a=axis ; axis([min([Nvec,N1vec.^2]) max([Nvec,N1vec.^2]) a(3) a(4)]);
legend('Monte Carlo', 'Uniform Grid');
xlabel('N');ylabel('mean(z)');

figure(3);hold on;
semilogx(N1vec.^2,varzGrid,'r','LineWidth',2);
axis('auto');a=axis ; axis([min([Nvec,N1vec.^2]) max([Nvec,N1vec.^2]) a(3) a(4)]);
legend('Monte Carlo', 'Uniform Grid');
xlabel('N');ylabel('var(z)');

figure(4);clf;hold off;
surf(z);
title('Values of z Seen Over the Random Domain');

figure(5);clf;hold off;
loglog(Nvec,abs(meanzMC - meanzGrid(end)),'LineWidth',2);
hold on;
loglog(N1vec.^2,abs(meanzGrid - meanzGrid(end)),'r','LineWidth',2);
for i = 3:7,
 loglog([1e0 1e4], [.01 10^(-i)]);
end;
title('Error, Relative to Highest-Fidelity Grid Result');
legend('Monte Carlo', 'Uniform Grid');
a = axis ; axis([a(1) a(2) abs(meanzGrid(end-1)-meanzGrid(end)), a(4)]);
xlabel('N');

%%
%%

function [sdot] = MCvsGridDeriv(t,s)
global kp kd J kt ;

phidot = s(1);
phi = s(2);

torque = kt*(-kp*(phi-1) - kd*phidot); % control action

phidotdot = torque/J ; % equation of motion

sdot(1,1) = phidotdot;
 sdot(2,1) = phidot ;