Electronics Essentials for 2.017
Reviewing Basics

- *Kirchoff’s Voltage rule:* voltages V at a node are the same.
- *Kirchoff’s Current rule:* sum of currents i flowing into and out of a node is zero.
- Analogy: Voltage is like fluid pressure, current is like fluid volumetric flow rate. The wire is like a pipe.

- Resistor R: $V = IR$,
 - Dissipation: Resistive Power $P = I^2R = V^2/R$
 - Analogy: viscous losses in pipe flow
- Capacitor C: $i = C \frac{dV}{dt}$
 - Analogy: a hydraulic accumulator
- Inductor H: $V = L \frac{di}{dt}$
 - Analogy: inertia of water in a pipe
The Op-Amp

Two inputs (called inverting and non-inverting); one output.
The output voltage is a HUGE gain multiplied by the difference between the inputs.

Horiwitz’s & Hill’s golden rules:

a. *The op-amp enforces (in proper use)*

\[V_{\text{inv}} = V_{\text{non-inv}} \]

b. *No current flows into the device at either input*
Example Op-Amp: Adding a Voltage Bias

Voltage bias useful for bringing signal levels into the range of sensors.

The op-amp is discussed in detail by Horowitz and Hill, covering integrators, filters, etc.

\[\frac{V-V_{\text{inv}}}{R_1} = \frac{V_{\text{inv}}-V_{\text{out}}}{R_2} \quad \text{and} \quad V_{\text{inv}} = V_{\text{non-inv}} \]

\[V_{\text{out}} = \frac{V_{\text{inv}} (R_1 + R_2) - V_{\text{out}} R_1}{R_1} \]

Letting \(R_1 = R_2 \), then

\[V_{\text{out}} = 2V_{\text{non-inv}} - V \]

The circuit inverts the input \(V \) and adds on \(2V_{\text{non-inv}} \)

IF \(V_{\text{non-inv}} \) is ground, then \(V_{\text{out}} \) is just \(-V\). This is just an inverting amplifier.
Serial Communications

- How to transmit digital information fast and reliably over a few wires?
- Examples: RS-232, RS-485, etc. refer to pins & wires
- A minimal case of RS-232 (DB25 connector is full case):
 - Asynchronous operation; both sides agree on BAUD rate
 - Three wires: send (TX), receive (RX), ground
 - No error checking! No flow control!

EXAMPLE using CMOS components:

![Diagram showing serial communication example](image)

Successive bits read at midpoints, based on baud rate and on start bit leading edge.

2 + 4 + 8 + 16 + 128 = 158 = ‘_’ (underline)
EXAMPLE: A GPS String

- Garmin GPS25 series – Smart embedded device!
- Similar to TT8’s interface with you – I/O strings are passed through a serial port
- Reconfigurable through special commands
- Output at 1Hz
- String maintains exactly the same syntax: e.g.,

$$\text{GPRMC},hhmmss,V, ddmm.mmmm,N,dddmm.mmmm,E, 000.0,000.0,ddmmmyy,000.0,E,N,*XX<CR><LF>$$

→ 73 chars appear as one line:

$$\text{GPRMC},hhmmss,V,ddmm.mmmm,N,dddmm.mmmm,E,000.0,000.0,ddmmmyy,000.0,E,N,*XX$$
Serial devices communicate using **characters** encoded into **bits**. This includes upper- and lowercase letters, carriage returns and linefeeds, punctuation, etc. Characters are not numbers! E.g.,

```c
char c = '7' ;
char d[2] = '92' ;
int n ;
```

The numerical value of `c` is `[00110111]` (binary) or 55 (decimal). But because the ASCII characters ‘0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, and ’9’ occur in order, making simple conversions is easy:

```c
n = c – '0' ;
```

assigns to `n` the actual number 7. The ASCII character that goes with 7 is known as BEL – on many machines this will ring a bell if it is sent to the screen as a character! – `printf("%c",n)` ;

How to turn `d[2]` into a number?

```c
n = 10*( d[0] - '0' ) + ( d[1] - '0' ) ;
```
Pulse Width Modulation

• A Regular Waveform

![Diagram of PWM waveform with labels for Volts, V_{peak}, PWM period, and Pulsewidth.]

- PWM frequency (Hz) = 1 / PWM period
- Duty cycle = Pulsewidth / PWM period
- PWM frequencies typically range from 100Hz into MHz
- Duty cycles can be used from 0 – 100%, although some systems use much smaller ranges, e.g. 5-10% for hobby remote servos.
- The waveform has two pieces of information: Period and Pulsewidth, although they are usually not changed simultaneously.
Some PWM Uses

• **The Allure:** very fast, cheap switches and clocks to approximate continuous processes. Also, two-state signal resists noise corruption.

• **Sensors:** PWM period is naturally related to rotation or update rate: Hall effect, anemometers, incremental encoders, tachometers, etc.

• **Communication:** PWM duty cycle is continuously variable → like an D/A and an A/D.

• **Actuation:** At very high frequencies, physical systems filter out all but the mean; i.e.,

\[V_{\text{effective}} = \text{duty}_\text{cycle} \times V_{\text{peak}} \]

High frequency switching is the dominant mode for powering large motors!
Field Effect Transistor (FET)

- Like a “valve”, that is very easy to open or close. When FET is open, resistance is low (milli-Ohms); when FET is closed, resistance is high (mega-Ohms or higher)

- Typically three connections:
 - Gate: the signal; low current
 - Source: power in
 - Drain: power out

- N- and P-type junctions are common, and involve the polarity of the device. (N is shown)
- Extremely sensitive to static discharge! *Handle with care.*
- MOSFET: modern FET’s capable of handling higher power levels.
Bipolar Control with a MOSFET H-Bridge

MOSFET turns on when $V_{\text{gate}} > V_{\text{source}}$

MOSFET turns on when $V_{\text{gate}} < V_{\text{source}}$

To make flow UL to LR, set $A = \text{GND}$ and $D = V_s$

To make flow UR to LL, set $B = \text{GND}$ and $C = V_s$

Connect A and B to V_s with pull-up resistors;
Connect C and D to GND with pull-down resistors;
Control all four gates explicitly
The Basic DC Brush Motor

Torque $\tau \leftrightarrow$ (coils)(flux density)(current i), or, in a given motor,

$$\tau = k_t \times i$$ where k_t is the torque constant

But the motion of the coils also induces a voltage in the coil, the back-EMF:

$$e_b = k_t \times \omega \text{ (YES, that’s the same } k_t!)$$

And the windings have a resistance R:

$$e_R = R \times i$$

Summing voltages around the loop,

$$V_{\text{supply}} = e_b + e_R$$

Vector relations:

force = current x flux
field = velocity x flux
Properties of the DC Brush Motor

- No-load speed:
 \[\tau = 0 \Rightarrow i = 0 \Rightarrow \omega = \frac{V}{k_t} \]

- Zero-speed torque (BURNS UP MOTOR IF SUSTAINED):
 \[\omega = 0 \Rightarrow e_b = 0 \Rightarrow i = \frac{V}{R} \Rightarrow \tau = k_t \frac{V}{R} \]

- Power output:
 \[P_{\text{out}} = \tau \omega = i e_b \Rightarrow P_{\text{out}} = i \left(V - Ri \right) \]

- Efficiency:
 \[\eta = \frac{P_{\text{out}}}{P_{\text{in}}} = \frac{\tau \omega}{i V} \Rightarrow \eta = 1 - \frac{i R}{V} \]

Point of maximum power:
\[\tau = k_t \frac{V}{2 R} \]
Incremental Encoders for Control

- What is the position of the motor?
- Take advantage of cheap, fast counters → make a large number of pulses per revolution, and count them!
- Advantages of the incremental encoder:
 - High resilience to noise because it is a digital signal
 - Counting chip can keep track of multiple motor turns
 - Easy to make – phototransistor, light source, slotted disk
- Two pulse trains required to discern direction: quadrature

![Diagram of pulse trains](image)
Stepper Motors

Switched coils at fixed positions on the stator attract permanent magnets at fixed positions on the rotor.

Smooth variation of switching leads to half-stepping and micro-stepping.

Encoder still recommended!