Recall:
\[E = T + V = \frac{1}{2} m \dot{r}^2 + \frac{1}{2} mr^2 \dot{\phi}^2 + mg r = E_0 = \text{Const} \]

\[H_0 = mr^2 \dot{\phi} = \text{Const} \quad \Rightarrow \quad \dot{\phi} = \frac{H_0}{mr^2} \] \(\quad (\star) \)

Note: \(\phi \) is a cyclic coordinate (ignorable)
\[\frac{\partial E}{\partial \phi} = 0 \]

When such a coordinate present,
\[\# \text{DOF can be reduced by one} \quad \Rightarrow \quad \text{reduced mechanical system} \]

In present case, use \((\star)\) to obtain reduced energy
\[E = \frac{1}{2} m \dot{r}^2 + \frac{1}{2} mr^2 \dot{\phi}^2 + mg r = E_0 \]
\[T(r) \quad V(r) \]
\[\dot{r} = \sqrt{\frac{I}{m} (E_0 - V(r))} \]

Rigid Body Dynamics

1. \[\Delta \text{AB} = \text{Const} \]

2. \[\# \text{DOF} = 6 \]

3. Velocities at different points of a rigid body
\[\vec{V}_B = \vec{V}_A + \vec{\omega} \times \vec{r}_{AB} \]
\[\vec{V}_B = \vec{V}_A + \vec{\omega} \times \vec{r}_{AB} \]

It turns out that there exist a unique vector \(\vec{\omega} \) (angular velocity of the rigid body) such that
\[\vec{V}_B = \vec{V}_A + \vec{\omega} \times \vec{r}_{AB} \] \[\text{for all } A \in \mathbb{B} \]
a) If the rotation of the rigid body can be instantaneously decomposed to a finite # of rotations about "well-understood" fixed axes, then the angular velocities defined for those rotations, then ω is just the sum of those angular velocities.

\[\sum_{i=1}^{n} \omega_i \rightarrow \omega = \sum_{i=1}^{n} \omega_i \]

Surprising, because finite rotation in 3D doesn't commute to prove (i), note that instantaneously, Ω performs an instantaneous rotation about \hat{A}

In general, rotation in 3D about a fixed point can be described through matrix multiplication.

\[e(\tau) = R(\tau) e_0 \]

where $R(\tau)$ is a proper orthogonal matrix

Main properties of such matrices:

(i) Preserve length $\| e(\tau) \| = \| e_0 \|$, or $\langle R(\tau) e_0, R(\tau) e_0 \rangle = \langle e_0, e_0 \rangle$

In general $\langle I a, b \rangle = \langle a, I^T b \rangle$ (transpose of I)

\[\langle e_0, R(\tau) e_0 \rangle = \langle e_0, e_0 \rangle \]

I (because e_0 is an identity)

here $I = (1 \ 0 \ 0)
\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow R^{-1} = R^T$

\[\text{det}(R^T) \cdot \text{det}(R) = 1 \Rightarrow |\text{det}(R)| = 1 \]

b) Preserve orientation of vectors

$\Rightarrow \text{det} R > 0 \Rightarrow |\text{det}(R(\tau))| = 1$
Example

\[R(t) = \begin{pmatrix} \cos \theta(t) & \sin \theta(t) & 0 \\ -\sin \theta(t) & \cos \theta(t) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \xi_1(t) \\ \xi_2(t) \\ \xi_3(t) \end{pmatrix} = \begin{pmatrix} \xi_1(t) \\ \xi_2(t) \\ \xi_3(t) \end{pmatrix} \]

Using the above, fixing \(A \) we obtain

\[\frac{d}{dt} \{ \dot{x}_{AB}(t) = \dot{R}(t) x_{AB}(t) \} \]

\[\dot{x}_{AB} = \dot{R} x_{AB}(t) \]

Note: \(\dot{R} R^T = I \) / \(\frac{d}{dt} \)

\[\dot{R} R^T + R \dot{R}^T = 0 \]

\[\implies \dot{R} R^T = -R \dot{R}^T R \]

\[\implies \dot{x}_{AB} = \begin{pmatrix} \xi_{AB}^A(t) \\ \xi_{AB}^B(t) \\ \xi_{AB}^C(t) \end{pmatrix} \]

\[= \begin{pmatrix} \xi_{AB}^A(t) \\ \xi_{AB}^B(t) \\ \xi_{AB}^C(t) \end{pmatrix} = \begin{pmatrix} \xi_{AB}^A(t) \end{pmatrix} = \begin{pmatrix} 0 \end{pmatrix} \]

Skew Symmetric

By Assignment #2, for any 3D skew symmetric matrix \(\omega^3 \), there exists a 3D vector \(\omega^A \) such that

\[\omega^A \times \omega^B = \omega^A \times \omega^B \]

\[\dot{x}_{AB} = \dot{R}(t) x_{AB}(t) = \omega(t) \times x_{AB}(t) \]

\[\implies \dot{y}_0 = y_0 + \omega_A \times y_{AB} \]

\[x_0 \]

\[\begin{pmatrix} A \end{pmatrix} \]

\[\begin{pmatrix} y_0 \end{pmatrix} \]