2.04A Concepts

Linear time invariant systems
Solution in the time domain (ordinary differential equations – ODEs)
Solution in the Laplace domain (transfer function – TF)
 Poles and zeros; their physical meaning
 Stability: stay on the left-hand plane
1st order systems
 Impulse, step, and other responses
 Time constant
 Steady state
2nd order systems
 Impulse, step, and other responses
 Dominant pole (slow/fast poles)
 Over-/critically/under-damped response
 Damping ratio, natural frequency, damped oscillation frequency
 Rise time, settling time, peak time, overshoot
 Steady state
State space: formulation only
 Eigenvalues of system matrix ⇨ system poles
Certain physical implementations
 Flywheel
 DC motor with flywheel load and with/without inductance
 Simple RC / RL / RLC circuits, impedance and voltage divider
 More generally: physical model ⇒ ODE ⇒ system behavior

Feedback
Feedback loop architecture and feedback transfer function
 Feedback loop terminology: plant, controller, open/closed loop TFs
 The significance of feedback gain and steady-state error
Root Locus (finding the location of closed-loop poles as gain changes)
 Theorems for drawing Root Locus (but not in exhaustive detail, as in the
 book; what we covered in class only)
 Root Locus concepts and their physical meaning: branches, asymptotes, real
 and imaginary axis intercepts, break-out/break-in points
Controlling the transient response
 P-control (simplest, limited)
 PD-control (stabilizes and speeds up)
 I-control (terrible but it does fix steady-state error)
 PI-control (fixes steady-state error at cost of slight slowdown)
 PID-control (good compromise of all the above)