2.086 Objectives

• Knowledge
 – An understanding of the basic “canon” of numerical approaches and methods
 – sources of error and uncertainty
 – An understanding of the basic MATLAB architecture/environment, data types, syntax
2.086 Objectives (cont.)

• Skills
 – The ability to formulate an engineering problem in a mathematical form …
 – The ability to test and use (or reject) third-party numerical programs with confidence.
 – The ability to solve mechanical engineering problems by numerical approaches …

• Attitudes and Professional Values
 – A commitment to always providing … some indication of error and uncertainty …
2.007 Learning Objectives

After taking this subject students should be able to:

- Generate, analyze, and refine the design of electro-mechanical devices making use of physics and mathematics
- For common machine elements including fasteners, joints, springs, bearings, gearing, belts, chains, shafts, sensors, and electronics
 - Describe the function of the element
 - List common uses in mechanical systems and give examples
 - Analyze its performance and failure modes
 - Describe how they are manufactured and the implications of the alternatives
 - Select an element for a specific use based on information such as that typically available in a manufacturer’s catalog
- Apply experimentation and data analytic principles relevant to mechanical design
 - Consider the effects of geometric variation on a design
 - ...
- Communicate a design and its analysis (written, oral, and graphical forms)
 - Read and interpret mechanical drawings of systems with moderate complexity
 - ...
Ways to Score

You earn points based on how high you can get the slug to go on the “high striker”

You score one point for each liter of inflation your balloon

You score 1 point per ticket dispensed and removed

You can multiply your score by up to 3X by rotating the Ferris wheel
Operation!

Photo courtesy of watz on Flickr.
delt = 0.01;
J = 1/delt;
u_exac = (exp(-2*1)+1)/2;
up = 1; %initialization
for i=1:J
 un = up + (-2*up+1)*delt;
 up = un;
end
Apply this to the Macro-Me Robot

• How long would it take to cross the 2.007 contest field (8 feet = 2.4m)?
A Model of a Motor

\[
\tau(\Omega) = (K_t I) = \left(K_t \frac{(V - E)}{R} \right) = \left(\frac{K_t V_0}{R} - \frac{K_t^2}{R} \Omega \right)
\]
delt = 0.01;
J = 5/delt;

Kt=0.21; Rm=1;
Vb=4.8; m=1.456; Rw=0.05;

omega(1) = 0; dist(1) = 0; %initialization
for i=2:J
 omega(i) = omega(i-1) + (((Kt*Vb/Rm)-((Kt^2)*omega(i-1)/Rm))/(m*(Rw^2)))*delt;
 dist(i)=dist(i-1)+omega(i-1)*Rw*delt;
end

time=delt*min(find(dist>2.4))

figure(1)
plot(delt*(1:J),dist)
hold on
plot(delt*(1:J),2.4,'r--')
Newton-Raphson Method

- Make a guess at the solution
- Make a linear approximation of a function by e.g., finite difference
- Solve the linear system
- Use that solution as a new guess
- Repeat until some criterion is met

Initial guess

Next estimate
Example Problem

• Here is a leg from a simple robot
• If the servo motor starts from the position shown and rotates 45 deg CCW
• How far will the “foot” descend?
Define a Few Functions

\[
R=@(\text{theta}) \begin{bmatrix}
\cos(\text{theta}) & -\sin(\text{theta}) & 0 & 0 \\
\sin(\text{theta}) & \cos(\text{theta}) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix};
\]

\[
T=@(p) \begin{bmatrix}
1 & 0 & 0 & p(1) \\
0 & 1 & 0 & p(2) \\
0 & 0 & 1 & p(3) \\
0 & 0 & 0 & 1
\end{bmatrix};
\]

\[
R_p=@(\text{theta},p) \ T(p) * R(\text{theta}) * T(-p);
\]
Representing the Geometry

\[
\begin{align*}
 a &= \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}^T; \\
 b &= \begin{bmatrix} 1.527 & 0.556 & 0 & 1 \end{bmatrix}^T; \\
 c &= \begin{bmatrix} 2.277 & -1.069 & 0 & 1 \end{bmatrix}^T; \\
 d &= \begin{bmatrix} 0.75 & -1.625 & 0 & 1 \end{bmatrix}^T; \\
 e &= \begin{bmatrix} 2.277 & -3.069 & 0 & 1 \end{bmatrix}^T; \\
 f &= \begin{bmatrix} -1.6 & -1.3 & 0 & 1 \end{bmatrix}^T; \\
 g &= \begin{bmatrix} -1.4 & -1.75 & 0 & 1 \end{bmatrix}^T; \\
 h &= \begin{bmatrix} -1.527 & -0.556 & 0 & 1 \end{bmatrix}^T; \\
 \text{leg} &= \begin{bmatrix} f & g & h & a & b & c & b & b + 0.05 * \text{Rp}(-\pi/2, b) * (h-b) \\
 h + 0.05 * \text{Rp}(\pi/2, h) * (b-h) & h & b & c & d & c & e & e + 0.1 * \text{Rp}(-\pi/2, e) * (c-e) \\
 c + 0.1 * \text{Rp}(-\pi/2, c) * (b-c) & b + 0.1 * \text{Rp}(\pi/2, b) * (c-b) & b \end{bmatrix}; \\
 \text{names} &= \text{char('f','g','h','a','b','c','d','e')}; \\
 \text{plot}(\text{leg}(1,:),\text{leg}(2,:),'o-b') \\
 \text{axis} & \text{ equal} \\
 \text{axis} & \text{([-2.5 3.5 -4.5 1.5])}; \\
 \text{loc} &= \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 13 & 15 \end{bmatrix}; \\
 \text{for } i &= 1:8 \\
 \text{text(leg(1,loc(i)) + 0.1, leg(2,loc(i)) - 0.1, names(i))} \\
 \text{end}
\end{align*}
\]
Animate the Leg Mechanism

```matlab
instant = 0.0001;  % pause between frames
leg=[f g h a b c b b+0.05*Rp(-pi/2,b)*(h-b) h+0.05*Rp(pi/2,h)*(b-h) h b c d c
e e+0.1*Rp(-pi/2,e)*(c-e) c+0.1*Rp(-pi/2,c)*(b-c) b+0.1*Rp(pi/2,b)*(c-b) b];
p = plot(leg(1,:),leg(2,:),'o -b',
     'EraseMode', 'normal');
axis equal
axis([-2.5 3.5 -4.5 1.5]);
options = optimset('Display', 'off ');
for theta=0:0.5*pi/180:210*pi/180
    g2=Rp(theta,f)*g;
    link1=@(phi) norm(g-h)-norm(g2-Rp(phi,a)*h);
    phi=fzero(link1,0);
    h2=Rp(phi,a)*h;
    b2=Rp(phi,a)*b;
    link2=@(gamma) norm(b-c)-norm(b2-Rp(gamma,d)*c);
    gamma=fzero(link2,0);
    c2=Rp(gamma,d)*c;
    link3=@(beta) norm(c2-Rp(beta,b2)*T(b2-b)*c);
    beta=fsolve(link3,0,options);
    e2=Rp(beta,b2)*T(b2-b)*e;
    leg=[f g2 h2 a b2 c2 b2 b2+0.05*Rp(-pi/2,b2)*(h2-b2) h2+0.05*Rp(pi/2,h2)*(b2-h2) h2 b2 c2 d c2 e2 e2+0.1*Rp(-pi/2,e2)*(c2-e2) c2+0.1*Rp(-pi/2,c2)*(b2-c2)
b2+0.1*Rp(pi/2,b2)*(c2-b2) b2];
    set(p,'XData',leg(1,:), 'YData',leg(2,:))
    pause(instant)
end
```
Back-Drive the Leg with Link cd

```matlab
instant = 0.0001;  % pause between frames

leg=[f g h a b c b b+0.05*Rp(-pi/2,b)*(h-b) h+0.05*Rp(pi/2,h)*(b-h) h b c d c
e e+0.1*Rp(-pi/2,e)*(c-e) c+0.1*Rp(-pi/2,c)*(b-c) b+0.1*Rp(pi/2,b)*(c-b) b];
p = plot(leg(1,:),leg(2,:),'o -b',
    'EraseMode', 'normal');
axis equal
axis([-2.5 3.5 -4.5 1.5]);

for gamma=0:-0.5*pi/180:-50*pi/180
    c2=Rp(gamma,d)*c;
    link1=@(phi) norm(b-c)-norm(Rp(phi,a)*b-c2);
    phi=fzero(link1,0);
    b2=Rp(phi,a)*b;
    h2=Rp(phi,a)*h;
    link2=@(theta) norm(g-h)-norm(Rp(theta,f)*g-h2);
    theta=fzero(link2,0);
    g2=Rp(theta,f)*g; leg=[f g2 h2 a b2 c2 d c2 e2];
    link3=@(beta) norm(c2-Rp(beta,b2)*T(b2-b)*c);
    beta=fsolve(link3,0,options);
    e2=Rp(beta,b2)*T(b2-b)*e;
    leg=[f g2 h2 a b2 c2 b2 b2+0.05*Rp(-pi/2,b2)*(h2-b2) h2+0.05*Rp(pi/2,h2)*(b2-h2) h2 b2 c2 d c2 e2 e2+0.1*Rp(-pi/2,e2)*(c2-e2) c2+0.1*Rp(-pi/2,c2)*(b2-c2)
b2+0.1*Rp(pi/2,b2)*(c2-b2) b2];
    set(p,'XData',leg(1,:), 'YData',leg(2,:))
    pause(instant)
end
```
A Proper Pour

Image © Peter Ridley. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

3 Position Synthesis

• Say we want a mechanism to guide a body in a prescribed way
• Pick 3 positions
• Pick two attachment points
• The 4 bar mechanism can be constructed graphically
Import the Desired Motions into Matlab

% dxf2coord 1.1 matrix
% author: lukas wischounig, innsbruck, austria (dept. of geology,
% university innsbruck), email: csad0018@uibk.ac.at
% date: may 2005
% filename: dxf2coord_11_matrix.m

figure(1)
hold on
axis equal

x=2;y=3;
for i=1:7
 plot(polylines(find(polylines(:,1)==i),x),polylines(find(polylines(:,1)==i),y))
end
plot(points(:,x)+0.2,points(:,y)-0.2,'ro')

names=char('1a', '2a', '3a','3c', '2b', '1b');
for i=1:6
 text(points(i,x), points(i,y), names(i,:))
end
Use a Function Minimizer to Make the Mechanism More Compact

\[
x_{\text{link}}=-6;
\]
\[
\text{sum}_\text{sqr}_\text{err}=\sum((\text{input}(2) - \text{norm}([x_{\text{link}} \text{ input}(1)] - \text{points}(1,x:y)))^2 \ldots
\quad (\text{input}(2) - \text{norm}([x_{\text{link}} \text{ input}(1)] - \text{points}(3,x:y)))^2 \ldots
\quad (\text{input}(2) - \text{norm}([x_{\text{link}} \text{ input}(1)] - \text{points}(3,x:y)))^2];
\]
\[
\text{best}=\text{fminsearch}(\text{sum}_\text{sqr}_\text{err},[-1 4]);
\]
\[
\text{bext}_y=\text{best}(1);
\]
\[
\text{best}_r\text{ad}=\text{best}(2);
\]

Force the joint to lie along this line

Find the

y location and radius

of a circle that fits the commanded points

1a 2a 3a in a least squares sense.
Automating the Task

• Very simple mechanically
• Nicely compact
• Springs could allow the servo to be loaded uniformly on the up and down stroke

Image © Peter Ridley. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

A Video on 3 Pos’n Synthesis

http://blossoms.mit.edu/video/frey.html
What about 3D Mechanisms?

In the past, we didn’t emphasize 3D mechanisms in the subject 2.007.

But thanks to 2.086, now maybe we can!

Rear suspension of a Honda Accord
An Idea for a 2.007 “Medical” Scoring Challenge

• Angioplasty -- mechanically widening narrowed or obstructed arteries (to correct effects of atherosclerosis)

• A balloon on a guide wire is placed and then inflated

• The balloon crushes the fatty deposits

• A stent may be used so the vessel remains open
What I Want to Design

• Scaled up stent
• Starts narrow and can be expanded with moderate pressure
• Kinematic freedom similar to actual stent
• Relatively thin in radial direction
• Stays open after expansion
• Can be reused many times
• Teach about 3D mechanism design
First Cut at the 3D Mechanism
Using fsolve to Animate the Stent

- Can I import the 3D CAD into Matlab?
- Can I control the motions of the objects?
Questions?