2.160 Table of Contents

1. Introduction
 Physical modeling vs. Black-box modeling
 System Identification in a Nutshell
 Applications

Part 1 ESTIMATION

2. Parameter Estimation for Deterministic Systems
 2.1 Least Squares Estimation
 2.2 The Recursive Least-Squares Algorithm
 2.3 Physical meanings and properties of matrix P
 Geometric interpretation of matrix P^{-1}.
 2.4 Initial Conditions and Properties of RLS
 2.5 Estimation of Time-varying Parameters
 2.6 Orthogonal Projection
 2.7 Multi-Output, Weighted Least Squares Estimation

3. Introduction to Random Variables and Random Processes
 3.1 Random Variables: A Review
 3.2 Random Process
 Characterization of a random process
 3.3 Application: Adaptive Noise Cancellation

4. Kalman Filtering
 4.1 State Estimation Using Observers
 4.2 Multivariate Random Processes
 4.3 State-Space Modeling of Random Processes
 4.4 Framework of the Kalman Filter
 Optimal State Estimation Problem
 4.5 The Discrete Kalman Filter as a Linear Optimal Filter
 4.5.1 The Kalman Gain
 4.5.2 Updating the Error Covariance
 4.5.3 The Recursive Calculation Procedure for the Discrete Kalman Filter
 4.6 Anatomy of the Discrete Kalman Filter
 4.7. Continuous Kalman Filter
 4.7.1 Converting the Discrete Filter to a Continuous Filter
 4.7.2 The Matrix Riccati Equation
 4.8 Convergence Analysis
 4.8.1 Steady-State Solution
 4.8.2 Fraction Decomposition
 4.8.3 Convergence Properties of Scalar
 4.9 Extended Kalman Filter
 4.9.1 Linearized Kalman Filter
 4.9.2 Extended Kalman Filter.

Part 2 REPRESENTATION AND LEARNING

5 Prediction Modeling of Linear Systems
 5.1 Impulse Response and Transfer Operator (Review)
 5.2 Z-Transform (Review)
 5.3 Noise Dynamics
5.4 Prediction

6 Model Structure of Linear Time Invariant System
 6.1 Model Sets
 6.2 A Family of Transfer Function Models
 6.2.1 ARX Model Structure
 6.2.2 Linear Regressions
 6.2.3 ARMAX Model Structure
 6.2.4 Pseudo-linear Regressions
 6.2.5 Output Error Model Structure
 6.3 State Space Model
 6.4 Consistent and Unbiased Estimation: Preview of Part 3, System ID
 6.5 Times-Series Data Compression
 6.6 Continuous-Time Laguerre Series Expansion
 6.7 Discrete-Time Laguerre Series Expansion

7 Nonlinear Models
 7.1 Nonlinear Black-Box Models
 7.2 Local Basis Functions
 7.3 Non-Adaptive Tuning of Local Basis Function Networks
 7.4 Adaptive Tuning Methods for radial Basis Function networks

8 Neural Networks
 8.1 Physiological Background
 8.2 Stochastic Approximation
 8.3 Multi-Layer Perceptrons
 8.4 The Error Back Propagation Algorithm
 8.5 Stabilizing Techniques

9 Wavelet Transforms
 9.1 Mathematical Background
 Review of Hilbert Space
 Parseval’s Theorem
 9.2 Gabor Transform: A Windowed Fourier Transform
 9.3 Wavelet Transform
 Wavelet Admissibility Conditions
 9.4 Inverse Wavelet Transform
 9.5 Discrete Wavelet Transform and Dyadic Sampling Grids
 9.6 Multiresolution Analysis
 9.7 Generating Mother Wavelets
 9.8 Daubechies’ Wavelets

Part 3 SYSTEM IDENTIFICATION THEORY
10 Frequency Domain Analysis
 10.1 Discrete Fourier Transform and Power Spectrum
 10.2 Applying spectral Analysis to System Identification

11 Informative Data Sets and Consistency
 11.1 Informative Data Sets
11.2 Consistency of Prediction Error Based Estimate
11.3 Frequency Domain Analysis of Consistency

12. Informative Experiments
 12.1 Persistence of Excitation
 12.2 Conditions for Informative Experiments
 12.3 Signal-to-Noise Ratio and Convergence Speed

13 Asymptotic Distribution of Parameter Estimates
 13.1 Overview
 13.2 Central Limit Theorems.
 13.3 Estimate Distribution
 13.4 Expression for the Asymptotic Variance
 13.5 Frequency-Domain Expressions for the Asymptotic Variance

14 Experiment Design
 14.1 Review of System ID Theories for Experiment Design
 Key Requirements for System ID
 14.2 Design Space of System ID Experiments
 14.3 Input Design for Open-Loop Experiments
 14.4 Practical Requirements for Input Design
 14.5 System ID Using Random Signals
 14.6 Pseudo-Random Binary Signal (PRBS)
 14.7 Sinusoidal Inputs.

15. Maximum Likelihood
 15.1 Principle
 15.2 Likelihood Function for Probabilistic Models of Dynamic Systems
 15.3 The Cramer-Rao Lower Bound
 15.4 Best Unbiased Estimators for Dynamical Systems.

16. Information Theory of System Identification
 16.1 Overview
 16.2 The Kullback Leibler Information Distance
 16.3 Re-formulating the Kullback-Leibler Distance
 16.4 Computation of Target T
 16.5 Akaike’s Information Criterion (AIC)