Problem 1:

\[f(t) = \frac{1}{2} \left(\frac{\partial}{\partial t} A U(t) / \text{ult} \right) t + (m + ma) \Delta t \]

Morrison's equation is not linear in general.

Choverer, thinking back to 13.021, there are instances when the inertial force dominates, and thus the non-linear drag component can be neglected.

Problem 2:

Impulse response \(h(t) = \delta(t - t_0) \)

\[\int_{-\infty}^{\infty} h(t - t_0) dt = 1 \text{ delta func.} \]

\[H(w) = \text{Fourier Transform} (h(t)) \]

\[= \int_{-\infty}^{\infty} h(t) e^{-i\omega t} dt \]

\[= hi \int_{-\infty}^{\infty} u(t - t_0) e^{-i\omega t} dt \]

\[\uparrow \text{constant} \]

Recall property of delta func.

\[\int_{-\infty}^{\infty} u(t - t_0) f(t) dt = f(t_0) \]
Therefore $H(\omega) = h_0 e^{-j\omega t}$

b) input $x(t) = x_0 \sin(\omega_0 t + \psi_0)$
output $y(t) = h(t) * x(t)$

- or -

$$y(t) = \frac{x_0}{|H(\omega_0)|} \sin \left(\omega_0 t + \psi_0 + \angle H(\omega_0) \right)$$

$$H(\omega_0) = h_0 e^{-j\omega_0 t} = |H(\omega_0)| e^{j\angle H(\omega_0)}$$

$$y(t) = x_0 h_0 \sin \left(\omega_0 t + \psi_0 + (-\omega_0 t) \right)$$

$$\Rightarrow y(t) = x_0 h_0 \sin(\omega_0 (t-t_0) + \psi_0)$$

Problem 3:

- Circular orbits
- Exponential decay in radius to $r = -\infty$
3b) pressure under waves

Dynamic pressure $= \rho \frac{\partial \Phi}{\partial t}$

Hydrostatic $p = \rho g z$

$$\rho(z, t) = \rho_0 e^{-k z} \left[\eta(z=0, t) + \rho g z \right]$$

where $\eta = a \cos(\beta x - \omega t)$

$$\eta(0, t) = a \cos(\omega t) \quad [\cos(-a) = \cos(+a)]$$

pressure is isotropic and acts everywhere normal to surface.

3c) Surge motion x_1

$$x_1 = x_{10} \cos(\omega t)$$

Equation of motion

$$(m + M_a) \ddot{x}_1 + B_n \dot{x}_1 + C_n x_1 = f(t)$$

mass linear tension/length of thread

3d) $H(\omega) = -\frac{(m + M_a) \omega^2 + i \omega B_n + C_n}{\omega^2} \frac{1}{2 \pi}$$
Problem 4

a) historical wave data
 - Ideally wave measurements over span of at least several decades
 - Info on wind patterns
 - Geological info about coastal shorelines & underwater formations that may affect wave development or propagation
 - From this we can get significant wave height etc...

b) Wind limits phase speed

 \[C_w = \frac{U_w}{K} = \frac{g}{\omega} = 4 \text{ m/s} \]

 \[\text{deepwater: } \omega^2 = gK \Rightarrow \omega = \frac{g}{K} \]

 \[\omega = \frac{g}{U_w} = \frac{10}{4} = 2.5 \text{ rad/s} \]

c) \[M_o = 12 \cdot (0.5) + 24 \cdot (0.5) + 18 \cdot (0.5) + 6 \cdot (0.5) \]

 \[S(\omega) = 2.5 \text{ rad/s} \]

 \[M_o = 30 \text{ m}^2 \text{ (rad/s)} \]

 \[M_2 = \sum_i \omega_i^2 S_i(\omega) d\omega_i = 45.75 \text{ m}^2 \text{ (rad/s)} \]

 \[M_4 = \sum_i \omega_i^4 S_i(\omega) d\omega_i = 105.95 \text{ m}^2 \text{ (rad/s)}^4 \]

 \[\varepsilon = 0.58 \]

 \[\text{Significant wave height } \xi = 4 \sqrt{M_o} = 21.9 \text{ m} \]

 V. large admitted.

d) \(\eta = \frac{3}{\text{day}} = \frac{3}{24 \times 60 \times 60} \text{ hrs, min, sec} \) = \(\frac{3}{86400} \text{ sec} \)

\(\eta = 3.47 \times 10^{-5} \text{ m}^2/\text{m} \)

\(\eta = \frac{1}{2\pi} \sqrt{\frac{M_0}{H_0}} e^{-\frac{L_0^2}{2H_0}} \)

\(\quad = \frac{1}{2\pi} \sqrt{\frac{45.75}{30}} \quad e^{-\frac{L_0^2}{2 \times 30}} = 3.47 \times 10^{-5} \)

Solve for \(L_0 \to \)

\[e^{-\frac{L_0^2}{160}} = \frac{3.47 \times 10^{-5}}{0.1965} \]

\[\ln \left(e^{-\frac{L_0^2}{160}} = 0.001766 \right) \]

\[-\frac{L_0^2}{160} = -6.34 \]

\[L_0^2 = 380.35 \text{ m}^2 \]

\[\therefore L_0 = 19.5 \text{ m} \]

e) well first off \(S \) is quite large, probably not realistic...

Secondly you want windmill high enough to be out of mind. Boundary layer above...

Ocean waves (regardless of 4m getting wet) (not 4m, mind assuming a 1km fetch 5 \(\times \) 5m) to aside...

for smooth surface turbulent flow