Problem 5.29

This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin

The sketch shows a lawn sprinkler with two horizontal arms of radial length \(R \), at the termination of which are nozzles (exit Area \(A_2 \)) pointing in a direction which is at an angle \(\theta \) relative to the tangent of a circumferential line, as shown. The sprinkler is free to rotate, but the bearing on which it is mounted exerts a torque \(k \omega \) in the direction opposing the rotation, \(\omega \) being the angular rate of rotation. A constant volume flow rate \(Q \) passes through the sprinkler, the flow being incompressible at density \(\rho \).

- (a) Find an expression for the steady-state angular velocity \(\omega \) of sprinkler in terms of the given quantities \(R, A_2, \theta, Q, \rho, \) and \(k \).

- (b) In the steady state, what is the velocity vector of the fluid emerging from the nozzles, as seen by an observer in the non-rotating reference frame? What is the fluid velocity at the nozzle vent if the bearing is frictionless (\(k = 0 \))?

- (c) If the pipe area at station 1 near the bearing is \(A_1 \), and the flow from that point to the nozzles is inviscid, what gage pressure is required at station 1 to sustain the flow rate in this steady state?