Consider a furnace of height H with a tall cylindrical smoke stack of diameter d ($d \ll H$) and height h ($h \gg H$). Air, an ideal gas ($P = \rho RT$), enters the furnace at atmospheric density and temperature and at local atmospheric pressure. Between stations 1 and 2, heat is added at constant pressure and the air temperature is raised by an amount ΔT. Thereafter, heat addition is negligible and the air rises through the stack at a sensibly constant density.

(a) On the assumption that viscous effects are negligible, derive an expression for the steady mass flow rate of air drawn by a stack of given height, h, in terms of the temperature rise in the furnace.

(b) If the chimney were capped off at the top, what would be the pressure differential across the cap, assuming that ΔT would not be altered by the flow stoppage?

Note: The height h of the stack is small compared with the length RT_a/g over which the atmosphere density falls by $1/e$ (see Problem 1.8). Hence, gravitational density changes can be neglected.