A liquid of density ρ and surface tension σ has been spilled on a horizontal plate so that it forms a very large puddle whose depth (in the central parts) is h. Consider the region near the edge of the puddle, which can be viewed to good approximation as two-dimensional. If the contact angle is α, derive an expression for the shape of the liquid surface $y_s(x)$.

Assume for simplicity that α is small, so that the radius of curvature of the surface is large compared with h and can be approximated by

$$R = \frac{1}{\left| \frac{d^2 y_s}{dx^2} \right|}$$

ans:

$$y_s = h \left[1 - \exp \left(-\sqrt{\frac{\rho g}{\sigma}} x \right) \right]$$

$$h = \tan \alpha \sqrt{\frac{\sigma}{\rho g}}$$
2.25 Advanced Fluid Mechanics
Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.