2.29 Numerical Fluid Mechanics
Spring 2015 – Lecture 19

REVIEW Lecture 18:

• Solution of the Navier-Stokes Equations
 – Discretization of the convective and viscous terms
 – Discretization of the pressure term
 – Conservation principles
 • Momentum and Mass
 • Energy
 \[
 \frac{\partial \rho \vec{v}}{\partial t} + \nabla (\rho \vec{v} \cdot \vec{v}) = -\nabla p + \mu \nabla^2 \vec{v} + \rho \vec{g}
 \nabla \cdot \vec{v} = 0
 \]
 \[
 \tilde{p} = p - \rho g \cdot \vec{r} + \mu \frac{2}{3} \nabla \cdot \vec{u} \quad (p \tilde{e}_i - \rho g_i \tilde{e}_i + \frac{2}{3} \mu \frac{\partial u_j}{\partial x_j} \tilde{e}_i)
 \]
 \[
 \int_S -\tilde{p} \tilde{e}_i \tilde{n} dS
 \]

 – Choice of Variable Arrangement on the Grid
 • Collocated and Staggered

 – Calculation of the Pressure
 \[
 \nabla \cdot \nabla p = \nabla^2 p = -\nabla \cdot \left(\frac{\partial \rho \vec{v}}{\partial t} - \nabla \cdot \left(\nabla (\rho \vec{v} \cdot \vec{v}) \right) + \nabla \cdot \left(\mu \nabla^2 \vec{v} \right) + \nabla \cdot (\rho \vec{g}) \right) = -\nabla \cdot (\nabla (\rho \vec{v} \cdot \vec{v}))
 \]
 \[
 \Rightarrow \frac{\partial \rho \vec{v}}{\partial t} = -\frac{\partial}{\partial x_i} \left(\frac{\partial p}{\partial x_i} \right) = -\frac{\partial}{\partial x_i} \left(\frac{\partial (\rho u_i u_j)}{\partial x_j} \right)
 \]
REVIEW Lecture 18, Cont’d:

• Solution of the Navier-Stokes Equations
 – Pressure Correction Methods:
 • i) Solve momentum for a known pressure leading to new velocity, then
 • ii) Solve Poisson to obtain a corrected pressure and
 • iii) Correct velocity (and possibly pressure), go to i) for next time-step.

• A Forward-Euler Explicit (Poisson for p at t_n, then mom. for velocity at t_{n+1})
• A Backward-Euler Implicit

\[
(\rho u_i)^{n+1} - (\rho u_i)^n = \Delta t \left(-\frac{\delta (\rho u_i u_j)}{\delta x_j} + \frac{\delta \tau_{ij}}{\delta x_j} - \frac{\delta p^{n+1}}{\delta x_i} \right) \quad \frac{\delta}{\delta x_i} \left(\frac{\delta p^{n+1}}{\delta x_i} \right) = \frac{\delta}{\delta x_i} \left(-\frac{\delta (\rho u_i u_j)}{\delta x_j} + \frac{\delta \tau_{ij}}{\delta x_j} \right)
\]

– Nonlinear solvers, Linearized solvers and ADI solvers

• Steady state solvers, implicit pressure correction schemes: iterate using
 – Outer iterations:
 \[
 A^{u^{m}} u_{i}^{m} = b_{u_{i}}^{m-1} - \frac{\delta p^{m-1}}{\delta x_i} \quad \text{but require} \quad A^{u^{m}} u_{i}^{m} = b_{u_{i}}^{m} - \frac{\delta p^{m}}{\delta x_i} \quad \frac{\delta u_{i}^{m}}{\delta x_i} = 0 \implies 0 \approx \frac{\delta \tilde{u}_{i}^{m}}{\delta x_i} - \frac{\delta}{\delta x_i} \left((A^{u^{m}})^{-1} \frac{\delta p^{m}}{\delta x_i} \right)
 \]
 – Inner iterations:
 \[
 A^{u^{m}} u_{i}^{m} = b_{u_{i}}^{m} - \frac{\delta p^{m}}{\delta x_i}
 \]
REVIEW Lecture 18, Cont’d:

• Solution of the Navier-Stokes Equations
 – Projection Correction Methods:
 – Construct predictor velocity field that does not satisfy continuity, then correct it using a pressure gradient
 – Divergence producing part of the predictor velocity is “projected out”

• Non-Incremental:
 – No pressure term used in predictor momentum eq.

• Incremental:
 – Old pressure term used in predictor momentum eq.

• Rotational Incremental:
 – Old pressure term used in predictor momentum eq.
 – Pressure update has a rotational correction: \(p^{n+1} = p^n + p' = p^n + \delta p^{n+1} + f(u') \)
TODAY (Lecture 19)

• Solution of the Navier-Stokes Equations
 – Pressure Correction Methods
 • Projection Methods
 – Non-Incremental, Incremental and Rotational-incremental Schemes
 – Fractional Step Methods:
 • Example using Crank-Nicholson
 – Streamfunction-Vorticity Methods: scheme and boundary conditions
 – Artificial Compressibility Methods: scheme definitions and example
 – Boundary Conditions: Wall/Symmetry and Open boundary conditions

• Time-Time-Marching Methods and ODEs. – Initial Value Problems
 – Euler’s method
 – Taylor Series Methods
 • Error analysis
 – Simple 2nd order methods
 • Heun’s Predictor-Corrector and Midpoint Method (belong to Runge-Kutta’s methods)
References and Reading Assignments

Rotational Incremental (Timmermans et al, 1996):

- Old pressure term used in predictor momentum equation
- Correct pressure based on continuity: \(p^{n+1} = p^n + p' = p^n + \delta p^{n+1} + f(u') \)
- Update velocity using pressure increment in momentum equation

\[
\left(\rho u_i^* \right)^{n+1} = \left(\rho u_i \right)^n + \Delta t \left(-\frac{\delta (\rho u_i u_j)^{n+1}}{\delta x_j} + \frac{\delta \tau_{ij}^{n+1}}{\delta x_j} - \frac{\delta p^n}{\delta x_i} \right); \left. \left(\rho u_i^* \right)^{n+1} \right|_{\partial D} = (bc)
\]

\[
\left(\rho u_i \right)^{n+1} = \left(\rho u_i^* \right)^{n+1} - \Delta t \frac{\delta (\delta p^{n+1})}{\delta x_i} = 0
\]

\[
\left(\rho u_i \right)^{n+1} = \left(\rho u_i^* \right)^{n+1} - \Delta t \frac{\delta (\delta p^{n+1})}{\delta x_i} = 0
\]

\[
p^{n+1} = p^n + \delta p^{n+1} - \mu \frac{\delta}{\delta x_i} \left(\left(u_i^* \right)^{n+1} \right)
\]

Notes:
- this scheme accounts for \(u' \) in the pressure eqn.
- It can be made into a SIMPLE-like method, if iterations are added
- Again, the advection term can be explicit or implicit. The rotational correction to the left assumes explicit advection
Other Methods: Fractional Step Methods

• In the previous methods, pressure is used to:
 – Enforce continuity: it is more a mathematical variable than a physical one
 – Fill the RHS of the momentum eqns. explicitly (predictor step for velocity)

• The fractional step methods (Kim and Moin, 1985) generalize ADI
 – But works on term-by-term (instead of dimension-by-dimension). Hence, does not necessarily use pressure in the predictor step

 – Let’s write the NS equations a in symbolic form:

\[
u_{i}^{n+1} = u_{i}^{n} + (C_{i} + D_{i} + P_{i}) \Delta t
\]

where \(C_{i}, D_{i}\) and \(P_{i}\) represent the convective, diffusive and pressure terms

 – The equation is readily split into a three-steps method:

\[
\begin{align*}
 u_{i}^{*} &= u_{i}^{n} + C_{i} \Delta t \\
 u_{i}^{**} &= u_{i}^{*} + D_{i} \Delta t \\
 u_{i}^{n+1} &= u_{i}^{**} + P_{i} \Delta t
\end{align*}
\]

 – In the 3rd step, the pressure gradient ensures \(u_{i}^{n+1}\) satisfy the continuity eq.
Fractional Step Methods, Cont’d

• Many variations of Fractional step methods exists
 – Pressure can be a pseudo-pressure (depends on the specific steps, i.e. what is in u^*_i, P_i)
 – Terms can be split further (one coordinate at a time, etc.)
 – For the time-marching, Runge-Kutta explicit, direct 2nd order implicit or Crank-Nicholson scheme are often used
 – Linearization and ADI are also used
 – Used by Choi and Moin (1994) with central difference in space for direct simulations of turbulence (Direct Navier Stokes, DNS)

• Next, we describe a scheme similar to that of Choi and Moin, but using Crank-Nicholson
Fractional Step Methods: Example based on Crank-Nicholson

• In the first step, velocity is advanced using:

 \[(\rho u_i)^* - (\rho u_i)^n = \Delta t \left(\frac{H(u_i^n) + H(u_i^*)}{2} - \frac{\delta p^n}{\delta x_i} \right)\]

 – Pressure from the previous time-step
 – Convective, viscous and body forces are represented as an average of old and new values (Crank-Nicolson)
 – Nonlinear equations ⇒ iterate, e.g. Newton’s scheme used by Choi et al (1994)

• Second-step: Half the pressure gradient term is removed from \(u_i^*\), to lead \(u_i^{**}\)

 \[(\rho u_i)^{**} - (\rho u_i)^* = -\Delta t \left(-\frac{1}{2} \frac{\delta p^n}{\delta x_i} \right)\]

• Final step: use half of the gradient of the still unknown new pressure

 \[(\rho u_i)^{n+1} - (\rho u_i)^{**} = -\Delta t \left(\frac{1}{2} \frac{\delta p^{n+1}}{\delta x_i} \right)\]

• New velocity must satisfy the continuity equation (is divergence free):

 – Taking the divergence of final step:

 \[\frac{\delta}{\delta x_i} \left(\frac{\delta p^{n+1}}{\delta x_i} \right) = 2 \frac{\delta (\rho u_i)^{**}}{\Delta t \delta x_i}\]

 – Once \(p^{n+1}\) is solved for, the final step above gives the new velocities
Fractional Step Methods:
Example based on Crank-Nicholson

• Putting all steps together:

\[(\rho u_i)^{n+1} - (\rho u_i)^n = \Delta t \left[\frac{H(u_i^n) + H(u_i^*)}{2} - \frac{1}{2} \left(\frac{\delta p^n}{\delta x_i} + \frac{\delta p^{n+1}}{\delta x_i} \right) \right] \]

– To represent Crank-Nicolson correctly, \(H(u_i^*)\) should be \(H(u_i^{n+1})\)

– However, we can show that the splitting error, \(u_i^{n+1} - u_i^*\), is 2\(^{nd}\) order in time and thus consistent with C-N’s truncation error: indeed, subtract the first step from the complete scheme, to obtain,

\[(\rho u_i)^{n+1} - (\rho u_i)^* = -\Delta t \left(\frac{\delta p^{n+1}}{\delta x_i} - \frac{\delta p^n}{\delta x_i} \right) \approx -\Delta t^2 \frac{\delta}{\delta x_i} \left(\frac{\delta p}{\delta t} \right) \]

– With this, one also obtains:

\[(\rho u_i)^{n+1} - (\rho u_i)^* = -\frac{\Delta t}{2} \frac{\delta (p^{n+1} - p^n)}{\delta x_i} = -\frac{\Delta t}{2} \frac{\delta (p')}{\delta x_i} \]

which is similar to the final step, but has the form of a pressure-correction on \(u_i^*\). This later eq. can be used to obtain a Poisson eq. for \(p'\) and replace that for \(p^{n+1}\)

• Fractional steps methods have become rather popular

 – Many variations, but all are based on the same principles (illustrated by C-N here)

 – Main difference with SIMPLE-type time-marching schemes: SIMPLE schemes solve the nonlinear pressure and momentum equations several times per time-step in outer iterations (iterative nonlinear solve)
Incompressible Fluid

Vorticity Equation

\(\vec{\omega} \equiv \text{curl} \vec{V} \equiv \nabla \times \vec{V} \)

Navier-Stokes Equation

\[\frac{\partial \vec{V}}{\partial t} + (\vec{V} \cdot \nabla) \vec{V} = -\frac{1}{\rho} \nabla P + \nu \nabla^2 \vec{V} \]

\textbf{curl} of Navier-Stokes Equation

\[\frac{D\vec{\omega}}{Dt} = (\vec{\omega} \cdot \nabla) \vec{V} + \nu \nabla^2 \vec{\omega} \]
Streamfunction-Vorticity Methods

- For incompressible, 2D flows with constant fluid properties, NS can be simplified by introducing the streamfunction ψ and vorticity ω as dependent variables

 \[u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x} \quad \text{and} \quad \omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \quad (\omega = \nabla \times \mathbf{v}) \]

 - Streamlines (lines tangent to velocity): constant ψ
 - Vorticity vector is orthogonal to plane of the 2D flow
 - 2D continuity is automatically satisfied: \(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \)

- In 2D, substituting $u = \frac{\partial \psi}{\partial y}$ and $v = -\frac{\partial \psi}{\partial x}$ in $\omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$ leads to the kinematic condition:

 \[\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = -\omega \]

- The vertical component of the vorticity dynamical equation leads:

 \[\rho \frac{\partial \omega}{\partial t} + \rho u \frac{\partial \omega}{\partial x} + \rho v \frac{\partial \omega}{\partial y} = \mu \left(\frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} \right) \]
Streamfunction-Vorticity Methods, Cont’d

• Main advantages:
 – Pressure does not appear in either of these equations!
 – 2D-NS has been replaced by a set of 2 coupled PDEs
 • Instead of 2 velocities and 1 pressure, we have only two dependent variables

• Explicit solution scheme
 – Given initial velocity field, compute vorticity by differentiation
 – Use this vorticity ω^n in the RHS of the dynamical equation for vorticity, to obtain ω^{n+1}
 – With ω^{n+1} the streamfunction ψ^{n+1} can be obtained from the Poisson equation
 • With ψ^{n+1}, we can differentiate to obtain the velocity
 – Continue to time $n+2$, and so on

• One issue with this scheme: boundary conditions
Streamfunction-Vorticity Methods, Cont’d

Boundary conditions

- Boundary conditions for ψ
 - Solid boundaries are streamlines and require: $\psi = \text{constant}$
 - However, values of ψ at these boundaries can be computed only if velocity field is known

- Boundary conditions for ω
 - Neither vorticity nor its derivatives at the boundaries are known in advance
 - For example, at the wall: \(\omega_{\text{wall}} = -\tau_{\text{wall}} / \mu \) since \(\tau_{\text{wall}} = \mu \frac{\partial u}{\partial y}_{\text{wall}} \)
 - Vorticity at the wall is proportional to the shear stress, but the shear stress is often what one is trying to compute
 - Boundary values for ω can be obtained from \(\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = -\omega \)
 - i.e. one-sided differences at the wall: \(\frac{\partial^2 \psi}{\partial n^2} = -\omega \)
 - but this usually converges slowly and can require refinement
 - Discontinuities also occur at corners
– Discontinuities also occur at corners for vorticity
 • The derivatives \(\frac{\partial v}{\partial x} \) and \(\frac{\partial u}{\partial y} \)
 are not continuous at A and B
 • This means special treatment for
 \[
 \omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}
 \]
 e.g. refine the grid at corners

• Vorticity-streamfunction approach useful in 2D, but is now less popular because extension to 3D difficult
 – In 3D, vorticity has 3 components, hence problem becomes as/more expensive as NS
 – Streamfunction is still used in quasi-2D problems
 • for example, in the ocean or in the atmosphere, but even there, it has been replaced by level-based models with a free-surface (no steady 2D continuity)
Artificial Compressibility Methods

• Compressible flow is of great importance (e.g. aerodynamics and turbine engine design)
• Many methods have been developed (e.g. MacCormack, Beam-Warming, etc)
• Can they be used for incompressible flows?
• Main difference between incompressible and compressible NS is the mathematical character of the equations
 – Incompressible eqs.: no time derivative in the continuity eqn: \(\nabla \cdot \mathbf{v} = 0 \)
 • They have a mixed parabolic-elliptic character in time-space
 – Compressible eqs.: there is a time-derivative in the continuity equation:
 • They have a direct hyperbolic character:
 \[
 \frac{\partial \rho}{\partial t} + \nabla (\rho \mathbf{v}) = 0
 \]
 • Allow pressure/sound waves
 – How to use methods for compressible flows in incompressible flows?
Artificial Compressibility Methods, Cont’d

• Most straightforward: Append a time derivative to the continuity equation
 – Since density is constant, adding a time-rate-of-change for \(\rho \) not possible
 – Use pressure instead (linked to \(\rho \) via an eqn. of state in the general case):
 \[
 \frac{1}{\beta} \frac{\partial p}{\partial t} + \frac{\partial \rho u_i}{\partial x_i} = 0
 \]
 where \(\beta \) is an artificial compressibility parameter (dimension of velocity\(^2\))

• Its value is key to the performance of such methods:
 – The larger/smaller \(\beta \) is, the more/less incompressible the scheme is
 – Large \(\beta \) makes the equation stiff (not well conditioned for time-integration)

• Methods most useful for solving steady flow problem (at convergence: \(\frac{\partial p}{\partial t} = 0 \))
or inner-iterations in dual-time schemes.
 – To solve this new problem, many methods can be used, especially
 • Time-marching schemes: what we have seen & will see (R-K, multi-steps, etc)
 • Finite differences or finite volumes in space
 • Alternating direction method is attractive: one spatial direction at a time
Artificial Compressibility Methods, Cont’d

• Connecting these methods with the previous ones:
 – Consider the intermediate velocity field \((\rho u_i^*)^{n+1}\) obtained from solving momentum with the old pressure
 – It does not satisfy the incompressible continuity equation:
 \[\frac{\delta (\rho u_i^*)^{n+1}}{\delta x_i} = \frac{\partial \rho^*}{\partial t} \]
 • There remains an erroneous time rate of change of mass flux
 \[\Rightarrow \text{method needs to correct for it} \]
• Example of an artificial compressibility scheme
 – Instead of explicit in time, let’s use implicit Euler (larger time steps for stiff term with large \(\beta\))
 \[\frac{p^{n+1} - p^n}{\beta \Delta t} + \left[\frac{\delta (\rho u_i)}{\delta x_i} \right]^{n+1} = 0 \]
 – Issue: velocity field at \(n+1\) not known \(\Rightarrow\) coupled \(u_i\) and \(p\) system solve
 – To decouple the system, one could linearize about the old (intermediate) state and transform the above equation into a Poisson equation for the pressure or pressure correction!
Artificial Compressibility Methods:
Example Scheme, Cont’d

- **Idea 1**: expand unknown u_i using Taylor series in pressure derivatives

\[(\rho u_i)^{n+1} \approx (\rho u_i^*)^{n+1} + \left[\frac{\delta (\rho u_i^*)}{\delta p} \right]^{n+1} (p^{n+1} - p^n) \quad (p^{*n+1} = p^n)\]

- Inserting $(\rho u_i)^{n+1}$ in the continuity equation leads an equation for p^{n+1}

\[\frac{p^{n+1} - p^n}{\beta \Delta t} + \frac{\delta}{\delta x_i} \left[(\rho u_i^*)^{n+1} + \left[\frac{\delta (\rho u_i^*)}{\delta p} \right]^{n+1} (p^{n+1} - p^n) \right] = 0\]

- Expressing $\left[\frac{\delta (\rho u_i^*)}{\delta p} \right]^{n+1}$ in terms of $\frac{\delta p^{n+1}}{\delta x_i}$ using N-S, this is a Poisson-like eq. for $p^{n+1} - p^n$!

- **Idea 2**: utilize directly

\[(\rho u_i)^{n+1} \approx (\rho u_i^*)^{n+1} + \left[\frac{\delta (\rho u_i^*)}{\delta \left(\frac{\delta p}{\delta x_i} \right)} \right]^{n+1} \left(\frac{\delta p^{n+1}}{\delta x_i} - \frac{\delta p^n}{\delta x_i} \right)\]

- Then, still take divergence of $(\rho u_i^*)^{n+1}$ and derive Poisson-like equation

- **Ideal value of β is problem dependent**

 - The larger the β, the more incompressible. Lowest values of β can be computed by requiring that pressure waves propagate much faster than the flow velocity or vorticity speeds
Numerical Boundary Conditions for N-S eqns.: Velocity

- At a wall, the no-slip boundary condition applies:
 - Velocity at the wall is the wall velocity (Dirichlet)
 - In some cases (e.g., fully-developed flow), the tangential velocity is constant along the wall. By continuity, this implies no normal viscous stress:

\[
\frac{\partial u}{\partial x} \bigg|_{\text{wall}} = 0 \quad \Rightarrow \quad \frac{\partial v}{\partial y} \bigg|_{\text{wall}} = 0
\]

\[\Rightarrow \quad \tau_{yy} = 2\mu \frac{\partial v}{\partial y} \bigg|_{\text{wall}} = 0\]

- For the shear stress:

\[
F_s^{\text{shear}} = \int_{S_s} \tau_{xy} \, dS = \int_{S_S} \mu \frac{\partial u}{\partial y} \, dS \approx \mu_S S_S \frac{u_P - u_S}{y_P - y_S}
\]

- At a symmetry plane, it is the opposite:

- Shear stress is null:

\[
\tau_{xy} = \mu \frac{\partial u}{\partial y} \bigg|_{\text{sym}} = 0 \quad \Rightarrow \quad F_s^{\text{shear}} = 0
\]

- Normal stress is non-zero:

\[
\tau_{yy} = 2\mu \frac{\partial v}{\partial y} \bigg|_{\text{sym}} \neq 0 \quad \Rightarrow \quad F_s^{\text{normal}} = \int_{S_s} \tau_{yy} \, dS = \int_{S_S} 2\mu \frac{\partial v}{\partial y} \, dS \approx 2\mu_S S_S \frac{v_P - v_S}{y_P - y_S}
\]
Numerical Boundary Conditions for N-S eqns.: Pressure

• Wall/Symmetry Pressure BCs for the Momentum equations
 – For the momentum equations with staggered grids, the pressure is not required at boundaries (pressure is computed in the interior in the middle of the CV or FD cell)
 – With collocated arrangements, values at the boundary for p are needed. They can be extrapolated from the interior (may require grid refinement)

• Wall/Symmetry Pressure BCs for the Poisson equation
 – When the mass flux (velocity) is specified at a boundary, this means that:
 • Correction to the mass flux (velocity) at the boundary is also zero
 • This affects the continuity eq., hence the p eq.: zero normal-velocity-correction \Rightarrow often means gradient of the pressure-correction at the boundary is then also zero

(take the dot product of the velocity correction equation with the normal at the bnd)
Numerical BCs for N-S eqns: Outflow/Outlet Conditions

• Outlet often most problematic since information is advected from the interior to the (open) boundary

• If velocity is extrapolated to the far-away boundary, \(\frac{\partial u}{\partial n} = 0 \) e.g., \(u_E = u_p \),
 – It may need to be corrected so as to ensure that the mass flux is conserved (same as the flux at the inlet)
 – These corrected BC velocities are then kept fixed for the next iteration. This implies no corrections to the mass flux BC, thus a von Neumann condition for the pressure correction (note that \(p \) itself is linear along the flow if fully developed).
 – The new interior velocity is then extrapolated to the boundary, etc.
 – To avoid singularities for \(p \) (von Neumann at all boundaries for \(p \)), one needs to specify \(p \) at a one point to be fixed (or impose a fixed mean \(p \))

• If flow is not fully developed: \(\frac{\partial u}{\partial n} \neq 0 \) \(\Rightarrow \frac{\partial p'}{\partial n} \neq 0 \) \(\Rightarrow \) e.g. \(\frac{\partial^2 u}{\partial n^2} = 0 \) or \(\frac{\partial^2 p'}{\partial n^2} = 0 \)

• If the pressure difference between the inlet and outlet is specified, then the velocities at these boundaries can not be specified.
 – They have to be computed so that the pressure loss is the specified value
 – Can be done again by extrapolation of the boundary velocities from the interior: these extrapolated velocities can be corrected to keep a constant mass flux.

• Much research in OBC in ocean modeling
2.29 Numerical Fluid Mechanics
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.