REVIEW Lecture 20: Time-Marching Methods and ODEs–IVPs

- Time-Marching Methods and ODEs – Initial Value Problems
 \[\frac{d \Phi}{dt} = B \Phi + (bc) \quad \text{or} \quad \frac{d \Phi}{dt} = B(\Phi, t) \quad \text{with} \quad \Phi(t_0) = \Phi_0 \]
 - Euler’s method
 - Taylor Series Methods
 - Error analysis: for two time-levels, if truncation error is of \(O(h^n) \), the global error is of \(O(h^{n-1}) \)
 - Simple 2nd order methods
 - Heun’s Predictor-Corrector and Midpoint Method (belong to Runge-Kutta’s methods)
 - To achieve higher accuracy in time: utilize information (known values of the derivative in time, i.e. the RHS \(f' \)) at more points in time, equate to Taylor series
 - Runge-Kutta Methods
 - Additional points are between \(t_n \) and \(t_{n+1} \)
 - Multistep/Multipoint Methods: Adams Methods
 - Additional points are at past time steps
 - Practical CFD Methods
 - Implicit Nonlinear systems
 - Deferred-correction Approach
TODAY (Lecture 21): End of Time-Marching Methods, Grid Generation

• Time-Marching Methods and ODEs – IVPs: End
 – Multistep/Multipoint Methods
 – Implementation of Implicit Time-Marching: Nonlinear systems
 – Deferred-correction Approach

• Complex Geometries
 – Different types of grids
 – Choice of variable arrangements: Cartesian or grid-oriented velocity, staggered or collocated var.

• Grid Generation
 – Basic concepts and structured grids
 • Stretched grids
 • Algebraic methods (for stretched grids)
 • General coordinate transformation
 • Differential equation methods
 • Conformal mapping methods
 – Unstructured grid generation
 • Delaunay Triangulation
 • Advancing Front method
References and Reading Assignments
Time-Marching

Multistep/Multipoint Methods

- Additional points are at time steps at which data has already been computed

- Adams Methods: fitting a (Lagrange) polynomial to the derivatives at a number of points in time
 - Explicit in time (up to t_n): Adams-Bashforth methods
 \[
 \phi^{n+1} - \phi^n = \sum_{k=n-K}^{n} \beta_k f(t_k, \phi^k) \Delta t
 \]
 - Implicit in time (up to t_{n+1}): Adams-Moulton methods
 \[
 \phi^{n+1} - \phi^n = \sum_{k=n-K}^{n+1} \beta_k f(t_k, \phi^k) \Delta t
 \]
 - Coefficients β_k’s can be estimated by Taylor Tables:
 - Fit Taylor series so as to cancel as high-order terms as possible
Example: Taylor Table for the Adams-Moulton 3-steps (4 time-nodes) Method

Denoting \(h = \Delta t \), \(\phi = u \), \(\frac{du}{dt} = u' = f(t,u) \) and \(u'_n = f(t_n,u^n) \), one obtains for \(K = 2 \):

\[
 u^{n+1} - u^n = \sum_{k=-K}^{1} \beta_k f(t_{n+k}, u^{n+k}) \Delta t = h \left[\beta_1 f(t_{n+1}, u^{n+1}) + \beta_0 f(t_n, u^n) + \beta_{-1} f(t_{n-1}, u^{n-1}) + \beta_{-2} f(t_{n-2}, u^{n-2}) \right]
\]

Taylor Table (at \(t_n \)):

<table>
<thead>
<tr>
<th></th>
<th>(u_n)</th>
<th>(h \cdot u'_n)</th>
<th>(h^2 \cdot u''_n)</th>
<th>(h^3 \cdot u'''_n)</th>
<th>(h^4 \cdot u''''_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_{n+1})</td>
<td>1</td>
<td>1</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{6})</td>
<td>(\frac{1}{24})</td>
</tr>
<tr>
<td>(-u_n)</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-h\beta_1 u'_{n+1})</td>
<td>(-\beta_1)</td>
<td>(-\beta_1)</td>
<td>(-\beta_1 \frac{1}{2})</td>
<td>(-\beta_1 \frac{1}{6})</td>
<td></td>
</tr>
<tr>
<td>(-h\beta_0 u'_n)</td>
<td>(-\beta_0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(-h\beta_{-1} u'_{n-1})</td>
<td>(-\beta_{-1})</td>
<td>(\beta_{-1})</td>
<td>(-\beta_{-1} \frac{1}{2})</td>
<td>(\beta_{-1} \frac{1}{6})</td>
<td></td>
</tr>
<tr>
<td>(-h\beta_{-2} u'_{n-2})</td>
<td>((-2)^0 \beta_{-2})</td>
<td>((-2)^1 \beta_{-2})</td>
<td>((-2)^2 \beta_{-2} \frac{1}{2})</td>
<td>((-2)^3 \beta_{-2} \frac{1}{6})</td>
<td></td>
</tr>
</tbody>
</table>

The first row (Taylor series) + next 5 rows (Taylor series for each term) must sum to zero.

This can be satisfied up to the 5th column (cancels 4th order term).

Hence, the AM method with 4-time levels is 4th order accurate.

Solving for the \(\beta_k \)'s \(\Rightarrow \beta_1 = 9/24 \), \(\beta_0 = 19/24 \), \(\beta_{-1} = -5/24 \) and \(\beta_{-2} = 1/24 \).
Examples of Adams Methods for Time-Integration

Explicit Methods. (Adams-Bashforth, with ABn meaning \(n\)th order AB)

\[
\begin{align*}
 u_{n+1} &= u_n + hu'_n & \text{Euler} \\
 u_{n+1} &= u_{n-1} + 2hu'_n & \text{Leapfrog} \\
 u_{n+1} &= u_n + \frac{1}{2}h \left[3u'_n - u'_{n-1}\right] & \text{AB2} \\
 u_{n+1} &= u_n + \frac{h}{12} \left[23u'_n - 16u'_{n-1} + 5u'_{n-2}\right] & \text{AB3}
\end{align*}
\]

Implicit Methods. (Adams-Moulton, with AMn meaning \(n\)th order AM)

\[
\begin{align*}
 u_{n+1} &= u_n + hu'_{n+1} & \text{Implicit Euler} \\
 u_{n+1} &= u_n + \frac{1}{2}h \left[u'_n + u'_{n+1}\right] & \text{Trapezoidal (AM2)} \\
 u_{n+1} &= \frac{1}{3} \left[4u_n - u_{n-1} + 2hu'_{n+1}\right] & \text{2nd-order Backward} \\
 u_{n+1} &= u_n + \frac{h}{12} \left[5u'_{n+1} + 8u'_n - u'_{n-1}\right] & \text{AM3}
\end{align*}
\]
Practical Multistep Time-Integration Methods for CFD

• High-resolution CFD requires large discrete state vector sizes to store the spatial information.

• As a result, up to two times (one on each side of the current time step) have often been utilized (3 time-nodes):
 \[u^{n+1} - u^n = h\left[\beta_1 f(t_{n+1}, u^{n+1}) + \beta_0 f(t_n, u^n) + \beta_{-1} f(t_{n-1}, u^{n-1}) \right] \]

• Rewriting this equation in a way such that differences w.r.t. Euler’s method are easily seen, one obtains (\(\theta = 0 \) for explicit schemes):
 \[
 (1 + \xi) u^{n+1} = \left[(1 + 2\xi) u^n - \xi u^{n-1} \right] + h\left[\theta f(t_{n+1}, u^{n+1}) + (1 - \theta + \varphi) f(t_n, u^n) - \varphi f(t_{n-1}, u^{n-1}) \right]
 \]

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\xi)</th>
<th>(\varphi)</th>
<th>Method</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Euler</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Implicit Euler</td>
<td>1</td>
</tr>
<tr>
<td>1/2</td>
<td>0</td>
<td>0</td>
<td>Trapezoidal or AM2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>1/2</td>
<td>0</td>
<td>2nd-order Backward</td>
<td>2</td>
</tr>
<tr>
<td>3/4</td>
<td>0</td>
<td>-1/4</td>
<td>Adams type</td>
<td>2</td>
</tr>
<tr>
<td>1/3</td>
<td>-1/2</td>
<td>-1/3</td>
<td>Lees</td>
<td>2</td>
</tr>
<tr>
<td>1/2</td>
<td>-1/2</td>
<td>-1/2</td>
<td>Two-step trapezoidal</td>
<td>2</td>
</tr>
<tr>
<td>5/9</td>
<td>-1/6</td>
<td>-2/9</td>
<td>A-contractive</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>-1/2</td>
<td>0</td>
<td>Leapfrog</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1/2</td>
<td>AB2</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>-5/6</td>
<td>-1/3</td>
<td>Most accurate explicit</td>
<td>3</td>
</tr>
<tr>
<td>1/3</td>
<td>-1/6</td>
<td>0</td>
<td>Third-order implicit</td>
<td>3</td>
</tr>
<tr>
<td>5/12</td>
<td>0</td>
<td>1/12</td>
<td>AM3</td>
<td>3</td>
</tr>
<tr>
<td>1/6</td>
<td>-1/2</td>
<td>-1/6</td>
<td>Milne</td>
<td>4</td>
</tr>
</tbody>
</table>

• Note that higher order R-K methods in time are now also used, especially low storage R-K.

© source unknown. All rights reserved. This content is excluded from our CreativeCommons license. For more information, see http://ocw.mit.edu/fairuse.
• Consider the nonlinear system (discrete in space):

\[\frac{d\Phi}{dt} = B(\Phi, t) ; \text{ with } \Phi(0) = \Phi_0 \]

• For an explicit method in time, solution is straightforward
 – For explicit Euler:
 \[\Phi^{n+1} = \Phi^n + B(\Phi^n, t_n) \Delta t \]
 – More general, e.g. AB:
 \[\Phi^{n+1} = F(\Phi^n, \Phi^{n-1}, \ldots, \Phi^{n-K}, t_n) \Delta t \]

• For an implicit method
 – For Implicit Euler:
 \[\Phi^{n+1} = \Phi^n + B(\Phi^{n+1}, t_{n+1}) \Delta t \]
 – More general:
 \[\Phi^{n+1} = F(\Phi^{n+1}, \Phi^n, \Phi^{n-1}, \ldots, \Phi^{n-K}, t_{n+1}) \Delta t \]
 \[\tilde{F}(\Phi^{n+1}, \Phi^n, \Phi^{n-1}, \ldots, \Phi^{n-K}, t_{n+1}) = 0 ; \text{ with } \tilde{F} = F \Delta t - \Phi^{n+1} \]

=> a nontrivial scheme is needed to obtain \(\Phi^{n+1} \)
Implementation of Implicit Time-Marching Methods: Larger dimensions and Nonlinear systems

• Two main options for an implicit method, either:

1. Linearize the RHS at \(t_n \):

 • Taylor Series: \(B(\Phi, t) = B(\Phi^n, t_n) + J^n (\Phi - \Phi^n) + \frac{\partial B}{\partial t} \bigg|^{tn} (t - t_n) + O(\Delta t^2) \) for \(t_n \leq t \leq t_{n+1} \)

 where \(J^n = \frac{\partial B}{\partial \Phi} \) ; i.e. \([J^n]_{ij} = \frac{\partial B_i}{\partial \Phi_j} \) (Jacobian Matrix)

 • Hence, the linearized system (for the frequent case of system not explicitly function of \(t \)):

 \[
 \frac{d \Phi}{dt} = B(\Phi) \quad \Rightarrow \quad \frac{d \Phi}{dt} = J^n \Phi + [B(\Phi^n) - J^n \Phi^n]
 \]

2. Use an iteration scheme at each time step, e.g. fixed point iteration (direct), Newton-Raphson or secant method

 • Newton-Raphson: \(x_{r+1} = x_r - \frac{1}{f'(x_r)} f(x_r) \) \(\Rightarrow \)

 \[
 \Phi_{r+1}^{n+1} = \Phi_{r}^{n+1} - \left(\frac{\partial \tilde{F}}{\partial \Phi_{n+1}^{r}} \right)^{-1}_{r} \tilde{F}(\Phi_{r}^{n+1}, t_{n+1})
 \]

 • Iteration often rapidly convergent since initial guess to start iteration at \(t_n \) close to unknown solution at \(t_{n+1} \)
Deferred-Correction Approaches

• Size of computational molecule affects both storage requirements and effort needed to solve the algebraic system at each time-step
 – Usually, we wish to keep only the nearest neighbors of the center node P in the LHS of equations (leads to tri-diagonal matrix or something close to it) ⇒ easier to solve linear/nonlinear system
 – But, approximations that produce such molecules are often not accurate enough

• Way around this issue?
 – Leave only the terms containing the nearest neighbors in the LHS and bring all other more-remote terms to the RHS
 • This requires that these terms be evaluated with previous or old values, which may lead to divergence of the iterative scheme

• Better approach?
Deferred-Correction Approaches, Cont’d

• Better Approach

– Compute the terms that are approximated with a high-order approximation explicitly and put them in the RHS

– Take a simpler approximation to these terms (that give a small computational molecule). Insert it twice in the equation, with a + and - sign

– One of these two simpler approximations, keep it in the LHS of the equations (with unknown variables values, i.e. implicit/new). Move the other to the RHS (i.e. computing it explicitly using existing/old values)

– The RHS now contains the difference between two explicit approximations of the same term, and is likely to be small ⇒

 • Likely no convergence problems to an iteration scheme (Jacobi, GS, SOR, etc) or gradient descent (CG, etc)

– Once the iteration converges, the low order approximation terms (one explicit, the other implicit) drop out and the solution corresponds to the higher-order approximation

• ⇒ Using H & L for high & low orders:

\[A^H x = b \quad \rightarrow \quad A^L x = b - \left[A^H x - A^L x \right]^{\text{old}} \]
Deferred-Correction Approaches, Cont’d

• This approach can be very powerful and general
 – Used when treating higher-order approximations, non-orthogonal grids, corrections needed to avoid oscillation effects, etc
 – Since RHS can be viewed as a correction ⇒ called deferred-correction
 – Note: both L&H terms could be implicit in time: use L&H explicit starter to get first values and then most recent old values in bracket during iterations (similar to Jacobi vs. Gauss Seidel)
 • Explicit for H (high-order) term, implicit for L (low-order) term

\[
\begin{align*}
A^H x &= b \\
\rightarrow A^L x_{\text{implicit}} &= b - \left[A^H x_{\text{explicit}} - A^L x_{\text{implicit}} \right]^{\text{old}}
\end{align*}
\]

• Implicit for both L and H terms (similar to Gauss-Seidel)

\[
\begin{align*}
A^H x &= b \\
\rightarrow A^L x_{\text{implicit}} &= b - \left[A^H x_{\text{implicit}} - A^L x_{\text{implicit}} \right]^{\text{old}}
\end{align*}
\]
Deferred-Correction Approaches, Cont’d

• Example 1: FD methods with High-order Pade’ schemes
 – One can use the PDE itself to express implicit Pade’ time derivative as a function of ϕ^{n+1} (see homework)
 – Or, use deferred-correction (within an iteration scheme of index r):
 • In time:
 $$\left(\frac{\partial \phi}{\partial t} \right)_{n}^{r+1} = \left(\frac{\phi_{n+1} - \phi_{n-1}}{2\Delta t} \right)^{r+1} + \left[\left(\frac{\partial \phi}{\partial t} \right)_{n}^{\text{Pade'}} - \frac{\phi_{n+1} - \phi_{n-1}}{2\Delta t} \right]^r$$
 • In space:
 $$\left(\frac{\partial \phi}{\partial x} \right)_{i}^{r+1} = \left(\frac{\phi_{i+1} - \phi_{i-1}}{2\Delta x} \right)^{r+1} + \left[\left(\frac{\partial \phi}{\partial x} \right)_{i}^{\text{Pade'}} - \frac{\phi_{i+1} - \phi_{i-1}}{2\Delta x} \right]^r$$
 • The complete 2nd order CDS would be used on the LHS. The RHS would be the bracket term: the difference between the Pade’ scheme and the “old” CDS. When the CDS becomes as accurate as Pade’, this term in the bracket is zero
 • Note: Forward/Backward DS could have been used instead of CDS, e.g. in time,
 $$\left(\frac{\partial \phi}{\partial t} \right)_{n+1}^{r+1} = \left(\frac{\phi_{n+1} - \phi_{n}}{\Delta t} \right)^{r+1} + \left[\left(\frac{\partial \phi}{\partial t} \right)_{n+1}^{\text{Pade'}} - \frac{\phi_{n+1} - \phi_{n}}{\Delta t} \right]^r$$
Deferred-Correction Approaches, Cont’d

- **Example 2 with FV methods: Higher-order Flux approximations**
 - Higher-order flux approximations are computed with “old values” and a lower order approximation is used with “new values” (implicitly) in the linear system solver:

\[
F_e = F_e^L + \left[F_e^H - F_e^L \right]^{\text{old}}
\]

where \(F_e \) is the flux. For ex., the low order approximation is a UDS or CDS

- Convergence and stability properties are close to those of the low order implicit term since the bracket is often small compared to this implicit term
- In addition, since bracket term is small, the iteration in the algebraic equation solver can converge to the accuracy of higher-order scheme
- Additional numerical effort is explicit with “old values” and thus much smaller than the full implicit treatment of the higher-order terms

- A factor can be used to produce a mixture of pure low and pure high order. This can be used to remove undesired properties, e.g. oscillations of high-order schemes

\[
F_e = \omega F_e^L + (1 - \omega) \left[F_e^H - F_e^L \right]^{\text{old}}
\]
References and Reading Assignments
Complex Geometries and Grid Generation

• Ref on Grid Generation only:
Grid Generation and Complex Geometries: Introduction

• Many flows in engineering and science involve complex geometries
• This requires some modifications of the algorithms:
 – Ultimately, properties of the numerical solver also depend on the:
 • Choice of the grid
 • Vector/tensor components (e.g. Cartesian or not)
 • Arrangement of the variables on the grid

• Different types of grids:
 – Structured grids: families of grid lines such that members of the same family do not cross each other and cross each member of other families only once
 – Advantages: simpler to program, neighbor connectivity, resultant algebraic system has a regular structure => efficient solvers
 – Disadvantages: can be used only for simple geometries, difficult to control the distribution of grid points on the domain (e.g. concentrate in specific areas)
 – Three types (names derived from the shape of the grid):
 • H-grid: a grid which can map into a rectangle
 • O-grid: one of the coordinate lines wraps around or is “endless”. One introduces an artificial cut at which the grid numbering jumps
 • C-grid: points on portions of one grid line coincide (used for body with sharp edges)
Grid Generation and Complex Geometries: Structured Grids

- Example: create a grid for the flow over a heat exchanger tube bank (only part of it is shown)

- Stepwise 2D Cartesian grid
 - Number of points non constant or use masks
 - Steps at boundary introduce errors

- vs. non-orthogonal, structured grid

© Prentice Hall. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
Grid Generation and Complex Geometries: Block-Structured Grids

- Grids for which there is one or more level subdivisions of the solution domain
 - Can match at interfaces or not
 - Can overlap or not
- Block structured grids with overlapping blocks are sometimes called “composite” or “Chimera” grids
 - Interpolation used from one grid to the other
 - Useful for moving bodies (one block attached to it and the other is a stagnant grid)
- Special case: Embedded or Nested grids, which can still use different dynamics at different scales

Fig. 2.2. Example of a 2D block-structured grid which matches at interfaces, used to calculate flow around a cylinder in a channel

Grid with 3 Blocks, with an O-Type grid (for coordinates around the cylinder)

Grid with 5 blocks, including H-Type and C-Type, and non-matching interface:

Fig. 2.3. Example of a 2D block-structured grid which does not match at interfaces, designed for calculation of flow around a hydrofoil under a water surface

“composite” or “Chimera” Grid

Fig. 2.4. A composite 2D grid, used to calculate flow around a cylinder in a channel

Grids © Springer. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
Grid Generation and Complex Geometries:

Other examples of Block-structured Grids

© Andreas C. Haselbacher. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Figure 1.7 in Haselbacher, Andreas C. "A grid-transparent numerical method for compressible viscous flows on mixed unstructured grids." PhD diss., Loughborough University, 1999.

© Prentice Hall. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
Grid Generation and Complex Geometries: Unstructured Grids

• For very complex geometries, most flexible grid is one that can fit any physical domain: i.e. unstructured

• Can be used with any discretization scheme, but best adapted to FV and FE methods

• Grid most often made of:
 – Triangles or quadrilaterals in 2D
 – Tetrahedra or hexahedra in 3D

• Advantages
 – Unstructured grid can be made orthogonal if needed
 – Aspect ratio easily controlled
 – Grid may be easily refined

• Disadvantages:
 – Irregularity of the data structure: nodes locations and neighbor connections need to be specified explicitly
 – The matrix to be solved is not regular anymore and the size of the band needs to be controlled by node ordering

© Andreas C. Haselbacher. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Figure 1.7 in Haselbacher, Andreas C. "A grid-transparent numerical method for compressible viscous flows on mixed unstructured grids." PhD diss., Loughborough University, 1999.
Unstructured Grids Examples: Multi-element grids

- For FV methods, what matters is the angle between the vector normal to the cell surface and the line connecting the CV centers ⇒
 - 2D equilateral triangles are equivalent to a 2D orthogonal grid
- Cell topology is important:
 - If cell faces parallel, remember that certain terms in Taylor expansion can cancel ⇒ higher accuracy
 - They nearly cancel if topology close to parallel
- Ratio of cells' sizes should be smooth
- Generation of triangles or tetrahedra is easier and can be automated, but lower accuracy
- Hence, more regular grid (prisms, quadrilaterals or hexahedra) often used near boundary where solution often vary rapidly
Complex Geometries: The choice of velocity (vector) components

- Cartesian (used in this course)
 - With FD, one only needs to employ modified equations to take into account of non-orthogonal coordinates (change of derivatives due to change of spatial coordinates from Cartesian to non-orthogonal)
 - In FV methods, normally, no need for coordinate transformations in the PDEs: a local coordinate transformation can be used for the gradients normal to the cell faces

- Grid-oriented:
 - Non-conservative source terms appear in the equations (they account for the re-distribution of momentum between the components)
 - For example, in polar-cylindrical coordinates, in the momentum equations:
 - Apparent centrifugal force and apparent Coriolis force
Complex Geometries: The choice of variable arrangement

- **Staggered arrangements**
 - Improves coupling $u \leftrightarrow p$
 - For Cartesian components when grid lines change by 90 degrees, the velocity component stored at the cell face makes no contribution to the mass flux through that face
 - Difficult to use Cartesian components in these cases
 - Hence, for non-orthogonal grids, grid-oriented velocity components often used

- **Collocated arrangements** (mostly used here)
 - The simplest one: all variables share the same CV
 - Requires more interpolation

Image by MIT OpenCourseWare.

Variable arrangements on a non-orthogonal grid. Illustrated are a staggered arrangement with (i) contravariant velocity components and (ii) Cartesian velocity components, and (iii) a colocated arrangement with Cartesian velocity components.
Classes of Grid Generation

• An arrangement of discrete set of grid points or cells needs to be generated for the numerical solution of PDEs (fluid conservation equations)
 – Finite volume methods:
 • Can be applied to uniform and non-uniform grids
 – Finite difference methods:
 • Require a coordinate transformation to map the irregular grid in the physical spatial domain to a regular one in the computational domain
 • Difficult to do this in complex 3D spatial geometries
 • So far, only used with structured grid (could be used with unstructured grids with polynomials ϕ defining the shape of ϕ around a grid point)
• Three major classes of (structured) grid generation: i) algebraic methods, ii) differential equation methods and iii) conformal mapping methods
• Grid generation and solving PDE can be independent
 – A numerical (flow) solver can in principle be developed independently of the grid
 – A grid generator then gives the metrics (weights) and the one-to-one correspondence between the spatial-grid and computational-grid
Grid Generation: Basic Concepts for Structured Grids

- Structured Grids (includes curvilinear or non-orthogonal grids)
 - Often utilized with FD schemes
 - Methods based on coordinate transformations
- Consider irregular shaped physical domain \((x, y)\) in Cartesian coordinates and determine its mapping to the computational domain in the \((\xi, \eta)\) Cartesian coordinates
 - Increase \(\xi\) or \(\eta\) monotonically in physical domain along “curved lines”
 - Coordinate lines of the same family do not cross
 - Lines of different family don’t cross more than once
 - Physical grid refined where large errors are expected
 - Mapped (computational) region has a rectangular shape:
 - Coordinates \((\xi, \eta)\) can vary from 1 to \((I, J)\), with mesh sizes taken equal to 1
 - Boundaries are mapped to boundaries

A simply-connected irregular shape in the physical plane is mapped as a rectangle in the computational plane.
Grid Generation: Basic Concepts for Structured Grids, Cont’d

- The example just shown was the mapping of an irregular, simply connected, region into a rectangle.
- Other configurations are of course possible
 - For example, a L-shape domain can be mapped into:
 - a regular L-shape
 - or into a rectangular shape

Image by MIT OpenCourseWare.
Grid Generation for Structured Grids: Stretched Grids

- Consider a viscous flow solution on a given body, where the velocity varies rapidly near the surface of the body (Boundary Layer)
- For efficient computation, a finer grid near the body and coarser grid away from the body is effective (aims to maintain constant accuracy)
- Possible coordinate transformation: a scaling \(\eta = \log (y) \leftrightarrow y = \exp(\eta) \)

\[
\begin{align*}
\xi &= x \\
\eta &= 1 - \frac{\ln[A(y)]}{\ln B}
\end{align*}
\]

where \(A(y) = \frac{\beta + (1 - y/h)}{\beta - (1 - y/h)} \) and \(B = \frac{\beta + 1}{\beta - 1} \)

The parameter \(\beta \ (1 < \beta < \infty) \) is the stretching parameter. As \(\beta \) gets close to 1, more grid points are clustered to the wall in the physical domain.

- Inverse transformation is needed to map solutions back from \(\xi, \eta \) domain:

\[
\begin{align*}
x &= \xi \\
y &= \frac{(\beta + 1) - (\beta - 1)B^{1-\eta}}{1 + B^{1-\eta}} h
\end{align*}
\]

© Springer. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
Grid Generation for Structured Grids: Stretched Grids, Cont’d

• How do the conservation equations change?

• Consider the continuity equation for steady state flow in physical \((x, y)\) space:

\[
\nabla . (\rho \vec{v}) = 0 \quad \Rightarrow \quad \frac{\partial \rho u}{\partial x} + \frac{\partial \rho v}{\partial y} = 0
\]

• In the computational plane, this equation becomes (chain rule)

\[
\begin{align*}
\frac{\partial \rho u}{\partial x} &= \frac{\partial \rho u}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial \rho u}{\partial \eta} \frac{\partial \eta}{\partial x} \\
\frac{\partial \rho u}{\partial y} &= \frac{\partial \rho v}{\partial \xi} \frac{\partial \xi}{\partial y} + \frac{\partial \rho v}{\partial \eta} \frac{\partial \eta}{\partial y}
\end{align*}
\]

\[
\Rightarrow \quad \frac{\partial \rho u}{\partial \xi} \xi_x + \frac{\partial \rho u}{\partial \eta} \eta_x + \frac{\partial \rho v}{\partial \xi} \xi_y + \frac{\partial \rho v}{\partial \eta} \eta_y = 0
\]

• For our stretching transformation, one obtains:

\[
\xi_x = 1, \quad \eta_x = 0, \quad \xi_y = 0, \quad \eta_y = \frac{2\beta}{h \ln(B)} \frac{1}{\beta^2 - (1 - y/h)^2}
\]

• Therefore, the continuity equation becomes:

\[
\frac{\partial \rho u}{\partial \xi} + \frac{\partial \rho v}{\partial \eta} \eta_y = 0
\]

– This equation can be solved on a uniform grid (slightly more complicated eqn. system), and the solution mapped back to the physical domain using the inverse transform.
Grid Generation for Structured Grids:
Algebraic Methods: Transfinite Interpolation

• Multi-directional interpolation (Transfinite Interpolation)
 – To generate algebraic grids within more complex domains or around more complex configurations, multi-directional interpolations can be used
 • They consist of a suite of unidirectional interpolations

• Unidirectional Interpolations (1D curve)
 – The Cartesian coordinate vector of any point on a curve $\mathbf{r}(x,y)$ is obtained as an interpolation between given points that lie on the boundary curves
 – How to interpolate? the regulars:

 • Lagrange Polynomials: match function values
 $$\bar{r}(i) = \sum_{k=0}^{n} L_k(i) \, \bar{r}_k \quad \text{with} \quad L_k(i) = \prod_{j=0, j \neq k}^{n} \frac{i - i_j}{i_k - i_j},$$

 • Hermite Polynomials: match both function and 1st derivative values
 $$\bar{r}(i) = \sum_{k=1}^{n} a_k(i) \, \bar{r}_k + \sum_{k=1}^{m} b_k(i) \, \bar{r}_k'$$
Unidirectional Interpolations (1D curve), Cont’d

- Lagrange and Hermite Polynomials fit a single polynomial from one boundary to the next => for long boundaries, oscillations may occur
- Alternative 1: use set of lower order polynomials to form a piece-wise continuous interpolation:
 - Spline interpolation (match as many derivatives as possible at interior point junctions), Tension-spline (more localized curvature) and B-splines (allows local modification of the interpolation)
- Alternative 2: use interpolation functions that are not polynomials, usually “stretching functions”: exp, tanh, sinh, etc

Multi-directional or Transfinite Interpolation

- Extends 1D results to 2D or 3D by successive applications of 1D interpolations
- For example, \(i \) then \(j \).
Multi-directional or Transfinite Interpolation, Cont’d

- In 2D, the transfinite interpolation can be implemented as follows

 - Interpolate position vectors \mathbf{r} in i-direction => leads to points $\mathbf{f}_1 = \mathcal{I}_i(\mathbf{r})$ and i-lines

 - Evaluate the difference between this result and \mathbf{r} on the j-lines that will be used in the j-interpolation (e.g. 2 differences: one with curve $i=0$ & one with $i=I$): $\mathbf{r} - \mathbf{f}_1$

 - Interpolation of the discrepancy in the j-direction: $\mathbf{f}_2 = \mathcal{I}_j(\mathbf{r} - \mathbf{f}_1)$

 - Addition of the results of this j-interpolation to the results of the i-interpolation:
 $$ \mathbf{r}(i, j) = \mathbf{f}_1 + \mathbf{f}_2 $$

- Of course, Lagrange, Hermite Polynomials, Spline and non-polynomial (stretching) functions can be used for transfinite interpolations

- In 2D, inputs to program are 4 boundaries

- Issues: Propagates discontinuities in the interior and grid lines can overlap in some situations

- => needs to be refined by grid generator solving a PDE
Grid Generation for Structured Grids: Algebraic Methods: Transfinite Interpolation, Cont’d

• Examples:

![Grid Examples](image)

Fig. 9.12. (a) C-grid around ellipse: Unidirectional Lagrange Interpolation, (b) C-grid around ellipse: Unidirectional Hermite Interpolation, (c) C-grid around ellipse: Unidirectional Lagrange Interpolation with Hyperbolic Tangent Spacing, (d) C-grid around ellipse: Unidirectional Hermite Interpolation with Hyperbolic Tangent Spacing.