Review Lecture 3

- Truncation Errors, Taylor Series and Error Analysis
 - Taylor series:
 \[f(x_{i+1}) = f(x_i) + \Delta x f'(x_i) + \frac{\Delta x^2}{2!} f''(x_i) + \frac{\Delta x^3}{3!} f'''(x_i) + \ldots + \frac{\Delta x^n}{n!} f^{(n)}(x_i) + R_n \]

 \[R_n = \frac{\Delta x^{n+1}}{n+1!} f^{(n+1)}(\xi) \]
 - Use of Taylor series to derive finite difference schemes (first-order Euler scheme with forward, backward and centered differences)
 - General error propagation formulas and error estimation, with examples
 Consider \(y = f(x_1, x_2, x_3, \ldots, x_n) \). If \(\varepsilon_i \)'s are magnitudes of errors on \(x_i \)'s, what is the error on \(y \)?
 - The Differential Formula:
 \[\varepsilon_y \leq \sum_{i=1}^{n} \left| \frac{\partial f(x_1, \ldots, x_n)}{\partial x_i} \right| \varepsilon_i \]
 - The Standard Error (statistical formula):
 \[E(\Delta_y) \approx \sqrt{\sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_i} \right)^2 \varepsilon_i^2} \]
 - Error cancellation (e.g. subtraction of errors of the same sign)
 - Condition number:
 \[K_p = \frac{\bar{x} f'(\bar{x})}{f(\bar{x})} \]
 - Well-conditioned problems vs. well-conditioned algorithms
 - Numerical stability

Reference: Chapra and Canale, Chapters 3 and 4
REVIEW Lecture 3, Cont’d

- Roots of nonlinear equations \(f(x) = 0 \)

 - Bracketing Methods:
 - Systematically reduce width of bracket, track error for convergence: \(|\varepsilon_a| = \frac{|\hat{x}_r^n - \hat{x}_r^{n+1}|}{\hat{x}_r^n} \leq \varepsilon_s \)

 - **Bisection**: Successive division of bracket in half
 - determine next interval based on sign of: \(f(x_1^{n+1})f(x_{\text{mid-point}}^{n+1}) \)

 - Number of Iterations: \(n = \log_2 \left(\frac{\Delta x^0}{E_{a,d}} \right) \)

- **False-Position (Regula Falsi)**: As Bisection, excepted that next \(x_r \) is the “linearized zero”, i.e. approximate \(f(x) \) with straight line using its values at end points, and find its zero:
 \[
 x_r = x_U - \frac{f(x_U)(x_L - x_U)}{f(x_L) - f(x_U)}
 \]

- “Open” Methods:

 - Systematic “Trial and Error” schemes, don’t require a bracket \(g(x) = x + c f(x) \)

 - Computationally efficient, don’t always converge

 - **Fixed Point Iteration (General Method or Picard Iteration):**
 \[
 x_{n+1} = g(x_n) \quad \text{or} \quad x_{n+1} = x_n - h(x_n)f(x_n)
 \]
Numerical Fluid Mechanics: Lecture 4 Outline

• Roots of nonlinear equations
 – Bracketing Methods
 • Example: Heron’s formula
 • Bisection
 • False Position
 – “Open” Methods
 • Fixed-point Iteration (General method or Picard Iteration)
 – Examples
 – Convergence Criteria
 – Order of Convergence
 • Newton-Raphson
 – Convergence speed and examples
 • Secant Method
 – Examples
 – Convergence and efficiency
 • Extension of Newton-Raphson to systems of nonlinear equations
 – Roots of Polynomial (all real/complex roots)
 • Open methods (applications of the above for complex numbers)
 • Special Methods (e.g. Muller’s and Bairstow’s methods)
• Systems of Linear Equations

Reference: Chapra and Canale, Chapters 5 and 6
Open Methods (Fixed Point Iteration)

Convergence Theorem

Hypothesis:
\(g(x) \) satisfies the following Lipschitz condition:

There exist a \(k \) such that if
\[x \in I \]
then
\[|g(x) - g(x^e)| = |g(x) - x^e| \leq k|x - x^e| \]

Then, one obtains the following Convergence Criterion:
\[x_{n-1} \in I \Rightarrow |x_n - x^e| = |g(x_{n-1}) - x^e| \leq k|x_{n-1} - x^e| \]

Applying this inequality successively to \(x_{n-1}, x_{n-2}, \text{ etc} \):
\[|x_n - x^e| \leq k^n|x_0 - x^e| \]

Convergence
\[x_0 \in I, \ k < 1 \]
If the derivative of \(g(x) \) exists, then the Mean-value Theorem gives:

\[
\exists \xi \in [x, x^e] \mid g(x) - g(x^e) = g'(\xi)(x - x^e)
\]

\[
\begin{cases}
 x < \xi < x^e \\
 x^e < \xi < x
\end{cases}
\]

Hence, a Sufficient Condition for Convergence

If \(|g'(x)|_{x \in I} \leq k < 1 \Rightarrow |g(x) - x^e| \leq k|x - x^e|\)
Example: Cube root

\[x^3 - 2 = 0 \quad \Rightarrow \quad x^c = 2^{1/3} \]

Rewrite

\[g(x) = x + C(x^3 - 2) \]

\[g'(x) = 3Cx^2 + 1 \]

Convergence, for example in the 0 < x < 2 interval?

\[|g'(x)| < 1 \quad \Leftrightarrow \quad -2 < 3Cx^2 < 0 \]

For \(0 < x < 2 \) \(\Rightarrow \) \[-1/6 < C < 0 \]

\[C = -\frac{1}{6} \Rightarrow x_{n+1} = g(x_n) = x_n - \frac{1}{6}(x_n^3 - 2) \]

Converges more rapidly for small \(|g'(x)| \)

\[g'(1.26) = 3C \cdot 1.26^2 + 1 = 0 \quad \Leftrightarrow \quad C = -0.21 \]

Ps: this means starting in smaller interval than 0 < x < 2 (smaller x's)

cube.m

```matlab
n=10;
g=1.0;
C=-0.21;
sq(i)=g;
for i=2:n
    sq(i)=sq(i-1)+C*(sq(i-1)^3 -a);
end
hold off
f=plot([0 n],[a^(1./3.) a^(1./3.)],'b');
set(f,'LineWidth',2);
hold on
f=plot(sq,'r');
set(f,'LineWidth',2);
f=plot((sq-a^(1./3.))/(a^(1./3.)),'g');
set(f,'LineWidth',2);
legend('Exact','Iteration','Error');
f=title(['a = ' num2str(a) ', C = ' num2str(C)]);
set(f,'FontSize',16);
grid on
```
Open Methods (Fixed Point Iteration)

Converging, but how close: What is the error of the estimate?

Consider the

Absolute error: \[|x_{n-1} - x^e| \leq |x_{n-1} - x_n| + |x_n - x^e| \]

= \[|x_{n-1} - x_n| + |g(x_{n-1}) - g(x^e)| \]

= \[|x_{n-1} - x_n| + |g'(\xi)||x_{n-1} - x^e| \]

\[\leq |x_{n-1} - x_n| + k|x_{n-1} - x^e| \]

\[\Rightarrow \]

\[|x_{n-1} - x^e| \leq \frac{1}{1-k}|x_{n-1} - x_n| \quad (0 \leq k < 1) \]

Hence, at iteration n:

\[|x_n - x^e| \leq k|x_{n-1} - x^e| \leq \frac{k}{1-k}|x_{n-1} - x_n| \]

Fixed-Point Iteration Summary

\[x_{n+1} = g(x_n) \]

Absolute error:

\[|x_n - x^e| \leq \frac{k}{1-k}|x_{n-1} - x_n| \]

Convergence condition:

\[|g'(x)| \leq k < 1, \quad x \in I \]

Note: Total compounded error due to round-off is bounded by

\[\varepsilon_{r-o} / (1-k) \]
Order of Convergence for an Iterative Method

- The speed of convergence for an iterative method is often characterized by the so-called **Order of Convergence**

- Consider a series \(x_0, x_1, \ldots \) and the error \(e_n = x_n - x^e \). If there exist a number \(p \) and a constant \(C \neq 0 \) such that

\[
\lim_{n \to \infty} \frac{|e_{n+1}|}{|e_n|^p} = C
\]

then \(p \) is defined as the Order of Convergence or the Convergence exponent and \(C \) as the asymptotic constant

- \(p=1 \) linear convergence,
- \(p=2 \) quadratic convergence,
- \(p=3 \) cubic convergence, etc

- Note: Error estimates can be utilized to accelerate the scheme (Aitken’s extrapolation, of order \(2p-1 \), if the fixed-point iteration is of order \(p \))

- Fixed-Point: often linear convergence, \(e_{n+1} = g'(\xi) e_n \)

- “Order of accuracy” used for truncation err. (leads to convergence if stable)
“Open” Iterative Methods: Newton-Raphson

- So far, the iterative schemes to solve \(f(x) = 0 \) can all be written as

\[
x_{n+1} = g(x_n) = x_n - h(x_n) f(x_n)
\]

- Newton-Raphson: one of the most widely used scheme

- Extend the tangent from current guess \(x_n \) to find point where \(x \) axis is crossed:

\[
x_{n+1} = x_n - \frac{1}{f'(x_n)} f(x_n)
\]

or truncated Taylor-series:

\[
f(x_{n+1}) = f(x_n) + f'(x_n)(x_{n+1} - x_n) = 0 \ \Rightarrow
\]
Newton-Raphson Method:
Its derivation based on local derivative and “fast” rate of convergence

Non-linear Equation
\[f(x) = 0 \iff x = g(x) \]

Convergence Crit., use Lipschitz condition & \(x_n = g(x_{n-1}) \)
\[|g'(x_n)| < k < 1 \Rightarrow |x_n - x^e| \leq k|x_{n-1} - x^e| \]

Fast Convergence
\[|g'(x^e)| = 0 \]

\[g(x) = x + h(x)f(x), \quad h(x) \neq 0 \]

\[g'(x^e) = 1 + h(x^e)f'(x^e) + h'(x^e)f(x^e) \]
\[= 1 + h(x^e)f'(x^e) \]

\[g'(x^e) = 0 \iff h(x) = -\frac{1}{f'(x)} \]

Newton-Raphson Iteration
\[x_{n+1} = g(x_n) = x_n - \frac{f(x_n)}{f'(x_n)} \]
Newton-Raphson Method: Example

\[x_{n+1} = x_n - \frac{1}{f'(x_n)} f(x_n) \]

Example – Square Root

\[x = \sqrt{a} \iff f(x) = x^2 - a = 0 \]

Newton-Raphson

\[x_{n+1} = x_n - \frac{x_n^2 - a}{2x_n} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) \]

Same as Heron’s formula!

```matlab
"sqr.m"
a=26;
n=10;
g=1;
sq(1)=g;
for i=2:n
    sq(i) = 0.5*(sq(i-1) + a/sq(i-1));
end
hold off
plot([0 n],[sqrt(a) sqrt(a)],'b')
hold on
plot(sq,'r')
plot(a./sq,'r-')
plot((sq-sqrt(a))/sqrt(a),'g')
grid on
```
Newton-Raphson Example: Its use for divisions

\[x = \frac{1}{a} \]

\[f(x) = ax - 1 = 0 \]

\[f'(x) = a \]

\[\frac{f(x)}{f'(x)} = \frac{ax - 1}{a} = x^e(ax - 1) \approx x(ax - 1) \]

which is a good approximation if \(\left| \frac{x - x^e}{x^e} \right| \ll 1 \)

Hence, Newton-Raphson for divisions:

\[x_{n+1} = x_n - x_n(ax_n - 1) \]

div.m

```matlab
a=10;
n=10;
g=0.19;
sq(1)=g;
for i=2:n
    sq(i)=sq(i-1) - sq(i-1)*(a*sq(i-1) -1) ;
end
hold off
plot([0 n],[1/a 1/a],'b')
hold on
plot(sq,'r')
pplot((sq-1/a)*a,'g')
grid on
legend('Exact','Iteration','Rel Error');
title(['x = 1/' num2str(a)]
```

![Graph](attachment:graph.png)
Newton-Raphson: Order of Convergence

Define:

\[\epsilon_n = x_n - x^c \]

Taylor Expansion:

\[g(x_n) = g(x^c) + \epsilon_n g'(x^c) + \frac{1}{2} \epsilon_n^2 g''(x^c) \cdots \]

Since \(g'(x_c) = 0 \), truncating third order terms and higher, leads to a second order expansion:

\[g(x_n) - g(x^c) \simeq \frac{1}{2} \epsilon_n^2 g''(x^c) \]

\[\epsilon_{n+1} = x_{n+1} - x^c \simeq \frac{1}{2} \epsilon_n^2 g''(x^c) \]

Relative Error:

\[\frac{\epsilon_{n+1}}{|x^c|} \simeq \frac{1}{2} |x^c| g''(x^c) \left(\frac{\epsilon_n}{|x^c|} \right)^2 = A(x^c) \left(\frac{\epsilon_n}{|x^c|} \right)^2 \]

\[\epsilon_{n+1} \simeq \epsilon_n^m A \]

Note: at \(x_c \), one can evaluate \(g'' \) in terms of \(f' \) and \(f'' \) using

\[g(x) = x - \frac{f}{f'} \quad , \quad g'(x) = \frac{f f''}{f'^2} \quad \text{and} \quad g''(x) = \frac{f''}{f'} + \frac{f f'''}{f'^2} + f(...) \]
Newton-Raphson: Issues

a) Inflection points in the vicinity of the root, i.e. \(f''(x^e) = 0 \)

b) Iterations can oscillate around a local minima or maxima

c) Near-zero slope encountered

d) Zero slope at the root

Four cases in which there is poor convergence with the Newton-Raphson method.
1. In Newton-Raphson we have to evaluate 2 functions: \(f(x_n), f'(x_n) \)

2. \(f(x_n) \) and \(f'(x_n) \) may not be given in closed, analytical form: e.g. in CFD, even \(f(x_n) \) is often a result of a numerical algorithm

Approximate Derivative:

\[
f'(x_n) \approx \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}
\]

Secant Method Iteration:

\[
x_{n+1} = x_n - \frac{f(x_n)(x_n - x_{n-1})}{f(x_n) - f(x_{n-1})} = \frac{f(x_n)x_{n-1} - f(x_{n-1})x_n}{f(x_n) - f(x_{n-1})}
\]

- Only 1 function call per iteration! : \(f(x_n) \)
- It is the open (iterative) version of False Position
Secant Method: Order of convergence

Absolute Error \(\epsilon_n = x_n - x^e \)

\[
\epsilon_{n+1} = x_{n+1} - x^e = \frac{f(x^e + \epsilon_n)(x^e + \epsilon_{n-1}) - f(x^e + \epsilon_{n-1})(x^e + \epsilon_n)}{f(x^e + \epsilon_n) - f(x^e + \epsilon_{n-1})} - x^e
\]

Using Taylor Series, up to \(2^{nd} \) order

Absolute Error

\[
\epsilon_{n+1} \simeq \frac{1}{2} \epsilon_{n-1} \epsilon_n \frac{f''(x^e)}{f'(x^e)}
\]

Relative Error

\[
\frac{\epsilon_{n+1}}{|x^e|} \simeq \frac{\epsilon_{n-1}}{|x^e|} \frac{\epsilon_n}{|x^e|} \frac{f''(x^e)}{2f'(x^e)} x^e
\]

Convergence Order/Exponent

By definition:

\[
\epsilon_n = A(x^e)\epsilon_n^m \Rightarrow \epsilon_{n-1} = \left(\frac{1}{A}\epsilon_n\right)^{1/m} = B(x^e)\epsilon_n^{1/m}
\]

Then:

\[
\epsilon_{n+1} = C(x^e)\epsilon_n\epsilon_{n-1} = D(x^e)\epsilon_n^{1/m} = D(x^e)\epsilon_n^{1+1/m}
\]

\[
1 + \frac{1}{m} = m \iff m = \frac{1}{2}(1 + \sqrt{5}) \simeq 1.62
\]

Error improvement for each function call

- **Secant Method** \(\epsilon_{n+1}^* \simeq \epsilon_n^{1.62} \)
- **Newton-Raphson** \(\epsilon_{n+1}^* = \epsilon_n^2 \)
Roots of Nonlinear Equations

Multiple Roots

p-order Root

\[f(x) = (x - x^e)^p f_1(x), \quad f_1(x^e) \neq 0 \]

Newton-Raphson

\[x_{n+1} = g(x_n) = x_n - \frac{(x_n - x^e)^p f_1(x_n)}{p(x_n - x^e)^{p-1} f_1(x_n) + (x_n - x^e)^p f'(x_n)} \]

\[\Rightarrow \]

\[x_{n+1} = x_n - \frac{(x_n - x^e) f_1(x_n)}{p f_1(x_n) + (x_n - x^e) f'(x_n)} \]

Convergence

\[|x_{n+1} - x^e| \leq k |x_n - x^e| \sim |g'(x^e)| |x_n - x^e| \]

\[g'(x^e) = 1 - \frac{1}{p} \]

Slower convergence the higher the order of the root
Roots of Nonlinear Equations
Bisection

Algorithm

\[f(x_1^0) f(x_2^0) < 0 \]

\[x_1^{n+1} = x_1^n, \quad x_2^{n+1} = \frac{x_1^n + x_2^n}{2} \]

\[f(x_1^{n+1}) f(x_2^{n+1}) < 0 \]

\[x_1^{n+1} = x_1^{n+1}, \quad x_2^{n+1} = x_2^n \]

Less efficient than Newton-Raphson and Secant methods, but often used to isolate interval with root and obtain approximate value. Then followed by N-R or Secant method for accurate root.
Systems of Linear Equations

• Motivation and Plans

• Direct Methods for solving Linear Equation Systems
 – Cramer’s Rule (and other methods for a small number of equations)
 – Gaussian Elimination
 – Numerical implementation
 • Numerical stability
 – Partial Pivoting
 – Equilibration
 – Full Pivoting
 • Multiple right hand sides, Computation count
 • LU factorization
 • Error Analysis for Linear Systems
 – Condition Number
 • Special Matrices: Tri-diagonal systems

• Iterative Methods
 – Jacobi’s method
 – Gauss-Seidel iteration
 – Convergence
Motivations and Plans

• Fundamental equations in engineering are conservation laws (mass, momentum, energy, mass ratios/concentrations, etc)
 – Can be written as “ System Behavior (state variables) = forcing ”

• Result of the discretized (volume or differential form) of the Navier-Stokes equations (or most other differential equations):
 – System of (mostly coupled) algebraic equations which are linear or nonlinear, depending on the nature of the continuous equations
 – Often, resulting matrices are sparse (e.g. banded and/or block matrices)

• Lectures 3 and earlier today:
 – Methods for solving \(f(x) = 0 \) or \(f(x) = 0 \)
 – Can be used for systems of equations: \(f(x) = b \), i.e. \(f = (f_1(x), f_2(x), ..., f_n(x)) = b \)

• Here we first deal with solving Linear Algebraic equations:

\[
Ax = b \quad \text{or} \quad AX = B
\]
Motivations and Plans

• Above 75% of engineering/scientific problems involve solving linear systems of equations
 – As soon as methods were used on computers => dramatic advances

• Main Goal: Learn methods to solve systems of linear algebraic equations and apply them to CFD applications

• Reading Assignment
 – For Matrix background, see Chapra and Canale (ed. 7th. pg 233-244) and other linear algebra texts (e.g. Trefethen and Bau, 1997)

• Other References:
 – Any chapter on “Solving linear systems of equations” in CFD references provided.
Direct Numerical Methods for Linear Equation Systems

\[A \mathbf{x} = \mathbf{b} \quad \text{or} \quad A \mathbf{X} = \mathbf{B} \]

• Main Direct Method is: Gauss Elimination
 Key idea is simply to “combine equations so as to eliminate unknowns”

• First, let’s consider systems with a small number of equations
 – Graphical Methods
 • Two equations (2 var.): intersection of 2 lines
 • Three equations (3 var.): intersection of 3 planes
 • Useful to illustrate issues:
 no solution or infinite solutions (singular) or ill-conditioned system

Fig 9.2
Chapra and Canale

![Graphical Solutions]

Image by MIT OpenCourseWare.