SCATTERING FROM PARTICLES

\[\overline{E}_2 = \overline{E}_i + \overline{E}_s \]
\[\overline{H}_2 = \overline{H}_i + \overline{H}_s \]

\[\langle S \rangle = \frac{1}{2} \text{Re} (\overline{E} \times \overline{H}^*) = \frac{1}{2} \text{Re} (\overline{E}_i \times \overline{H}_i^*) + \frac{1}{2} \text{Re} (\overline{E}_s \times \overline{H}_s^*) + \frac{1}{2} \text{Re} (\overline{E}_i \times \overline{H}_s^* + \overline{E}_s \times \overline{H}_i^*) \]

\[\int \langle S \rangle \cdot d\overline{A} = \int \langle S_i \rangle \cdot d\overline{A} + \int \langle S_s \rangle \cdot d\overline{A} + \int \langle S_e \rangle \cdot d\overline{A} \]

\[-W_a = 0 + W_s - W_e \]
\[W = [\text{Power}] \]

\[W_e = W_a + W_s \]

PHYSICAL PICTURE

DETECTOR WILL MEASURE LESS DUE TO INCOMING BEING SCATTERED AND ABSORBED.
CROSS-SECTIONS

SCATTERING CROSS-SECTION
\[C_s = \frac{W_s}{I_i} \]

ABSORPTION
\[C_a = \frac{W_a}{I_i} \]

EXTINCTION
\[C_e = \frac{W_e}{I_i} \]

SCATTERING EFFICIENCY:
\[Q_s = \frac{C_s}{A_e} \quad (A_e = \pi r^2) \]

ABSORPTION
\[Q_a = \frac{C_a}{A_e} \]

EXTINCTION
\[Q_e = \frac{C_e}{A_e} \]

ALBEDO:
\[\omega_0 = \frac{Q_s}{Q_e} \]

PHASE FUNCTION \((\phi) \)

\[\phi(-\Omega' \rightarrow \Omega) = \frac{\text{POWER SCATTERED INTO } \Omega}{\text{POWER IN FROM SOLID } \Omega} \]

KNOSTROPIC CASE
ISOTROPIC SCATTERING

\[\phi (\Omega' \to \Omega) = 1 \]

\[\frac{1}{4\pi} \int \phi (\Omega' \to \Omega) \, d\Omega = 1 \]

ALL RESULTS THUS FAR ARE FOR ANY GEOMETRY, NOT JUST SPHERES

* SPHERICAL PARTICLES *

Mie Theory (1908, Gustav Mie)

\[Q_a = \frac{Z}{X^2} \sum_{n=1}^{\infty} (2n+1) \text{Re} \left\{ a_n + b_n^2 \right\} \]

\[Q_b = \frac{Z}{X^2} \sum_{n=1}^{\infty} (2n+1) \left(|a_n|^2 + |b_n|^2 \right) \]

\[a_n = f_1 \left[\psi_n, \xi_n, \mu, \nu \right] \]

\[b_n = f_2 \left[\right] \]
\[\psi_n \] \text{ RICATTI-BESSSEL FUNCTIONS} \\

\[\psi_{n+1}(x) = \frac{2n+1}{x} \]

\[X \text{ = SIZE PARAMETER} \quad x = \frac{2\pi r}{\lambda_0} \quad \lambda_0 \text{ IS WAVELENGTH IN SURROUNDING MEDIA} \]

\[m = \frac{N_1}{N_0} \left(\frac{\text{PARTICLE REFRACTIVE INDEX}}{\text{REFRACTIVE INDEX OF MEDIUM}} \right) \]

\[\frac{\lambda}{d} \]

- BIG PARTICLE SCATTERING SHOULD BE \(Z A c \) BUT NOT REALLY TRUE
Very Small Particle

\[Q_a > 1 \quad \xi = \frac{P_0 a}{4 \pi r^2 E_0} \]

Can be \(> 1 \) → violates Planck's law, but Planck says his law is not valid in this case.

- → ▲

Detector

+ Detector should be "small", so as not to pick-up side scattered power

Power measured @ detector

\[U = I_i (A_e - C_e) \]

Rayleigh Scattering \((x << 1)\)

\[Q_s = \frac{8}{3} \left| \frac{m^2 - 1}{m^2 + 2} \right|^2 x^4 \sim \frac{r^4}{\lambda^4} \quad C_s \sim r^6 \sim \lambda^2 \]

\[Q_e = 4 \Im \left(\frac{m^2 - 1}{m^2 + 2} \right) x \sim \frac{r}{\lambda} \quad C_a \sim r^3 \sim \lambda^4 \]

\[\sim Q_a \]

Induced Polarization

\[\overline{P} = \left(\frac{\varepsilon - 1}{\varepsilon + 2} \right) \frac{r^3}{\varepsilon} E_{\text{ind}} \]

\[\frac{\overline{P}}{D} \]
Rayleigh Phase Function

\[\phi(\theta) = \frac{3}{4} \left(1 + \cos^2 \theta \right) \]

Rayleigh - Gans Limit \(|m-1| \ll 1 \)

Geometric Limit \(X|m-1| \ll 1 \)

Rainbow phenomenon \(\Rightarrow \) related to phase function

\(H_2O \) particle

\[\cos \theta_\ell = \sqrt{\frac{n^2 - 1}{n^2 \ell(n^2 + 2) - 1}} \]

\(n = 1.33 \), \(\theta_\ell = 42^\circ \)

Various angles scatter different wavelengths of light from the \(H_2O \) particle more strongly or weakly.
SYSTEM OF PARTICLES

\[N_T = \frac{\text{PARTICLE \# DENSITY}}{\text{VOL.}} \]

UNIFORM SIZE SCATTERING COEFF.

\[0_s = C_s N_T - \frac{1}{m} \]

ABS. COEF. \[\chi = C_a N_T \]

EXT. COEF \[\psi = C_e N_T = 0_s + \chi \]