The engine geometry is:

The exposed area of the cylinder is

\[A = \pi B H + \left(\frac{\pi B^2}{4} \right) \times 2 \]

where \(H = \frac{V}{(\pi B^2/4)} \)

The mean piston speed is:

\[S_p = 2\pi N L = 2 \times \left(\frac{R_p n}{60} \right) L \]

The average charge density is \(\rho = \frac{M}{V} \) where \(M = (\rho v V_p / R_f) (1 + F_h) \)

The Reynolds no \(Re = \frac{PS_p}{\mu} \)

Then the heat transfer is given by \(Nu = 0.35 Re^{0.8} Pr^{0.4} \) and \(\delta = Nu \delta_k / \delta \).

The gas temperature \(T_g = \left(x_p T_k + (1 - x_p) T_u \right) / (x_p g_k u_k + (1 - x_p) g_u u_u) \)

(Note that strictly speaking, it should be \(\bar{U} \) in the above \(T_g \), but \(g \times C \) grows)

Finally, \(\dot{Q} = A_h \delta T \) and \(\delta T \) is obtained from \(\dot{Q} \) by integration.

\[Q = \int_{\text{inc}}^{\text{dec}} \dot{Q} \, dt = \int_{\text{dec}}^{\text{inc}} \dot{Q} \, dt \]

where \(\dot{Q} = \frac{d\theta}{dt} \) in radians.

Numerical values: - thru 8:30 is TDC compression.
9.2) Instantaneous piston speed

\[
\frac{U(0)}{2nL} = \frac{\pi}{2} \sin \theta \left[1 + \frac{Cn^2}{R - \sin^2(\theta)} \right]
\]

The corresponding values of \(R = [U(0)/2nL] \) are plotted. Note that \(U(0)/2nL \), the resolution per second of the engine.

Note: The reason why Savitral is such a small value (10^{-5}) is because the real criterion is life where \(h \) is the film thickness and \(e \) the surface roughness height.

\[
\left(\frac{h}{a} \right) = \left(\frac{a}{h} \right) \cdot \left(\frac{h}{a} \right)
\]

\[
\left(\frac{h}{a} \right) \approx \sqrt{5} \approx 2.2\
\]

\[
\left(\frac{h}{a} \right) = \left(\frac{a}{h} \right) \sqrt{5}
\]

If the initial \(\left(\frac{h}{a} \right) = 1.5 \) and \(e \) is typically \(\approx 3 \mu m \), then \(\left(\frac{h}{a} \right) = 100 \) and \(\text{Savitral} = \left[\left(\frac{h}{a} \right) \left(\frac{e}{h} \right) \right]^2 = \left(\frac{1}{100} \right)^2 \times 10^{-5} \)

\[\]