Topic 1

Design is a *Passionate* Process

Topics:

- Passion
- Deterministic design
- Systematic Organization of Ideas
- Design Process
- *Milestone 1: Understanding the Contest and Developing Strategies*

© 2000 Alexander Slocum
"Enthusiasm is one of the most powerful engines of success. When you do a thing, do it with all your might. Put your whole soul into it. Stamp it with your own personality. Be active, be energetic, be enthusiastic and faithful and you will accomplish your object. Nothing great was ever achieved without enthusiasm"

Ralph Waldo Emerson

- Use Passion as a catalyst:
 - Never stop asking:
 - “Is this really the best I can do”
 - “Can the design be made simpler”
 - Create, never stagnate
Passion? FOCUS
Keep Your Eye on the Prize

“You can’t always get what you want
But if you try sometimes well you might find
You get what you need”

Mick Jagger & Keith Richards 1969

Get a clear notion of what you desire to accomplish, then you will probably get it

Keep a sharp look-out upon your materials: get rid of every pound of material you can do without. Put yourself to the question, ‘What business has it there?’

Avoid complexities and make everything as simple as possible

Remember the get-ability of parts

Henry Maudslay (1700’s, the father of modern machine tools)
Before we can talk about a process for design, we must consider the things the best designers do as they solve problems

- **Best Engineering Practice** entails careful forethought and following standards
 - 62.5 grams of prevention is worth a kilogram of cure!
 - “Random Results are the Result of Random Procedures”

- Prevent problems before they occur:
 - Does not meet customer needs
 - Prevention:
 » Identify the **Functional Requirements** (FR)
 » Develop a **Design Parameter** that accomplishes each FR
 - Failure
 - Prevention: Design to withstand external and internal loads
 - Poor performance
 - Prevention: Design to be robust to tolerances and errors
 - Cost too much
 - Prevention: Create clever, frugal, manufacturable designs

- **Deterministic Design** is a key element of **Best Engineering Practice**
 - It is a means to systematically solve even the most complex problems in a rational, logical manner, while still allowing you to have wild crazy creative zoombah illiminational thoughts!
Passion? Play, Sketch, Model, Detail, Build & Test

- Engineering is often very much a tactile, visual, verbal, cerebral, and physical activity:
 - Play with the table and the kit parts
 - Sketch ideas
 - Create physical and analytical models to identify opportunities and test possible strategies
 - Detail the machine using all the engineering skills and tools at your disposal
 - Build & test your machine!
- Students who follow best engineering practice create very impressive machines with just the correct amount of effort

Alex Sprunt’s machine was almost exactly like the solid model, and it worked “out of the box”!
Deterministic Design

Everything has a cost, and everything performs (to at least some degree)
- If you spend all your time on a single tree, you will have no time for the forest
- If you do not pay attention to the trees, soon you will have no forest!
- You have to pay attention to the overall system and to the details

- Successful projects keep a close watch on budgets (time, money, performance)
 - Do not spend a lot of effort (money) to get a small increase in performance
 - “Bleeding edge” designs can drain you!
 - Do not be shy about taking all the performance you can get for the same cost!

- Stay nimble (modular!) and be ready to switch technology streams
 - It is at the intersection of the streams that things often get exciting!
Deterministic Design: *Reverse Engineering*

- How would you create a contest where the overall goals are:
 - The inertia of the machines is on the order of the inertia of the system
 - The system is SIMPLE to build and solid model (for the staff and the students!)
 - The contest can have MANY different possible winning strategies
 - Engineering analysis can tip the scales in a student’s favor!
- The answer is to:
 - Envision potential strategies
 - A strategy is an approach to solving a problem, but it does not include mechanism detail
 - Consider the feasibility of strategies in terms of physics, resources required, and resources available (available materials, equipment, time…)
 - Select one or two strategies for further development which define the detailed mechanism….
 - Concepts, Modules, Components
 - Follow a process whose pattern of development repeats at each level of detail
- What better way to design a robot for a contest than to understand and use the process used to design the contest?!
 - Try to *reverse engineer* the contest, including building and taking apart a model (CAD solid model or a physical model) of the table and recreating the analysis that likely went into its design
Deterministic Design: *Disruptive Technologies*

- Analysis is the lens which brings a problem into focus and lets you clearly see the best return on your investment
 - Value analysis of scoring methods
 - Physics of scoring methods
 - Risk analysis
 - Schedule analysis

Hyoseok Yang

1995’s *Pebble Beach!*
 Sami Busch

1996’s *Niagara Balls!*

1997’s *Pass The Puck!*
 Tim Zue

1998’s *Balcano!*
 Colin Bulthap

© 2000 Alexander Slocum
Deterministic Design: Nozzles: Strategies

- Deterministic Design leaves LOTS of room for the wild free creative spirit, and LOTS of room for experimentation and play.
- Deterministic Design is a catalyst to funnel creativity into a successful design.
- It is OK to iterate…
 - A goal is to never have to backtrack
 - A good engineer, however, knows when its time to let go…

© 2000 Alexander Slocum
Deterministic Design: *Schedules*

- Although time is relative, you will soon run out of them to live with if you keep missing deadlines!
 - No matter how good your ideas are, their value decays exponentially with every day they are late
 - Once a customer starts buying a product, if the manufacturer maintains diligence, you will find it extremely difficult to regain market share
- The process of getting a product to market involves phases
 - Identify & study problem, develop solution strategies and evolve “best one”
 - Create concepts and evolve “best one”
 - Create modules
 - Detail design, build, & test the modules starting with the most risky
 - Assembly integration, test, and modify as needed
 - Document and ship
Deterministic Design: *Risk Management*

- The key to deterministic design is risk management
- For every idea, risk must be assessed
 - Ask yourself which ideas and analysis (physics) are you most unsure of?
 - Which element, if defined or designed wrong, will neutralize the machine?
 - For every risk identified
 - Estimate the probability of occurrence (High, Medium, Low)
 - Identify a possible countermeasure
 - Prioritize your risk and continue to do analytical, computational, or physical *Bench Top Experiments* to test ideas before you move forward!
 - Good Engineering Practice continually applies!
 - Prayer is for your personal life!
 - Determinism is for design!

© 2000 Alexander Slocum
Deterministic Design: *Analytical Instinct*

- **TRUST** your analytical & deterministic training
 - Seek to create and then defeat ideas by exploring ALL possible alternatives
 - In a “Mr. Spock” “Commander Data”-like manner, logically seek to establish the need, understand the problem, create many concepts, subjectively evaluate ideas, analyze the bajeebees out of the idea.
 - This is the careful execution of the Design Process
 - This is what the best designers do to turn dreams into realities
- **& LISTEN** to your instincts
 - Be wild, random, and impulsive, and take great ideas that your bio-neural-net produces and keep evolving and hammering it until it yields an invention!
 - Sketch the first thoughts that come to mind when you encounter a problem!
 - This is the “Captain Kirk”, shoot from the hip, John Wayne Die Hard approach.
 - This is the element of passion that is the essence of great design!
 - This is what drove Mozart, Edison, Einstein, Elvis….the great creators!
- Combine *analysis & instinct* to become a successful *passionate* design engineer!
 - Learn from experience how much of each to use!
 - Tim Zue’s tracked vehicle won, because he used sandpaper to increase the friction on his starting platform!
Systematic Organization of Ideas

<table>
<thead>
<tr>
<th>Functional Requirements (Events)</th>
<th>Design Parameters (Idea)</th>
<th>Analysis</th>
<th>References</th>
<th>Risk</th>
<th>Counter-measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Words</td>
<td>Words & Drawings</td>
<td>Experiments, Words, FEA, Equations, Spreadsheets…</td>
<td>Historical documents, www…</td>
<td>High, Medium, Low (explain why)</td>
<td>Ideas or plan to mitigate each risk, including use of off-the-shelf known solutions</td>
</tr>
<tr>
<td>A list of independent functions that the design is to accomplish. Series (1,2,3…) and Parallel (4a, 4b…) FRs (Events) can be listed to create the Function Structure</td>
<td>Ideally independent means to accomplish each FR. AN FR CAN HAVE SEVERAL POTENTIAL DPs. The “best one” ultimately must be selected</td>
<td>Economic (financial or maximizing score etc), time & motion, power, stress… EACH DP’s FEASABILITY MUST BE PROVEN. Analysis can be used to create DPs!</td>
<td>Anything that can help develop the idea including personal contacts, articles, patents, web sites…</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- To actually use the FRDPARRC Table:
 - Create one actual table that becomes your development roadmap
 - Dedicate one sheet to each FR/DP pair
 - This can become your Milestone Report (“Press Release”) for an idea (DP)
FRDPARRC: Precision Linear Motion Design Example

FRDPARRC Sheet Topic: Precision Low Cost Linear Motion Stage

Functional Requirement (Event): Preload air bearings

Design Parameter (description of idea): Preload air bearings using magnetic attractive force of motor, so air bearings need only ride on two surfaces instead of having to wrap around a beam; thus many precision tolerances to establish bearing gap can be eliminated

Sketch:

![Image of a linear motion stage with magnetic attractive force](image)

Analysis (physics in words): The magnet attraction force is 5x greater than the motor force, so it can be positioned at an angle such that even preload is applied to all the bearings. As long as the magnet attraction net vertical and horizontal force are proportional to the bearing areas and is applied through the effective centers of the bearings, they will be evenly loaded without any applied moments.

\[
F_v = F_{magnets} \sin \theta \\
F_h = F_{magnets} \cos \theta
\]

\[
\frac{F_v}{F_h} = \frac{A_v}{A_h} = \tan \theta
\]

\[
\theta = \arctan \left(\frac{A_v}{A_h} \right)
\]

References: Vee & Flat bearings used on many common machine tools where gravity provides preload. NEAT uses two magnet tracks, one horizontal and one vertical, to provide horizontal and vertical preload force. Patent search revealed no other relevant art.

Risks: The magnet pitch may cause the carriage to pitch as the motor’s iron core windings pass over the magnets

Countermeasures: Add steel out of phase with motor core position, or if the error is repeatable, map it and compensate for it in other axes

© 2000 Alexander Slocum
Bringing It All Together as a Design Process

- Follow a design process to develop an idea in steps from coarse to fine:
 - **First Step:** Evaluate the resources that are available
 - **Second Step:** Carefully study the problem and make sure you have a clear understanding of what needs to be done and what are the constraints (rules, limits)
 - Steps 1 & 2 are often interchangeable
 - **Third Step:** Start by creating possible strategies using words, analysis, and simple diagrams
 - Imagine possible motions, data flows, and energy flows from start to finish or from finish back to start!
 - Simple exploratory analysis and experiments can be most enlightening!
 - Whatever you think of, others will too, so think about how to defeat that about which you think!
 - **Fourth Step:** Create concepts to implement the best strategies, using words, analysis, and sketches
 - Use same methods as for strategies, but now start to sketch ideas
 - Often simple experiments or analysis are done to investigate effectiveness or feasibility
 - Select and detail the best concept...
 - **Fifth Step:** Develop modules, using words, analysis, sketches, and solid models
 - **Sixth Step:** Develop components, using words, detailed analysis, sketches, and solid models
 - **Seventh Step:** Detailed engineering & manufacturing review
 - **Eighth Step:** Detailed drawings
 - **Ninth Step:** Build, test, modify...
 - **Tenth Step:** Fully document process and create service manuals...

© 2000 Alexander Slocum
First Step: Resource Assessment

Before even thinking about potential solutions to a problem, one has to first take stock of the available resources:

- What time is available?
 - When is the project due?
 - How many person-hours a week can be spent on the project?
 - What are the hours of operation for support facilities (library, shop, computers…)
 - Designer engineers are often way too ambitious!

What materials and components are available?

- Lay out all the materials you have (physically or catalogs) in front of you and play with them, let them talk to you, what are their limits, how have others used them…
- Look through hardware magazines
- Check the Web: http://www.efunda.com/home.cfm
- Look at other machines
- Knowing your hardware is a POWERFUL design catalyst

What manufacturing processes are available?

- You may not have the time to have a casting made!
- You may not have access to a wire EDM, nor the time to send out the parts!
Second Step: Understanding the Problem (Opportunity!)

- Any problem can be dissected and understood by establishing a starting point, and then analyzing the system and its elements
 - It is like creating a design in reverse
- Study a problem and then define it in terms of its energy storage and dissipative elements, and its geometry and materials:
 - **Simple physical models**
 - Physically play with the contest table, and each element of the kit: Let the hardware talk to you….
 - A sketch model made from simple materials can be very useful to enable you to play with the problem
 - **Simple drawings**
 - A simple hand-drawn isometric figure helps you to pattern the problem into your bio neural net
 - A simple solid model can also be very useful, particularly when later seeking to test your solid model solution on the problem
 - **Physics: First-Order-Analysis**
 - Words to describe the physics
 - Simple analysis with guestimates of realistic numbers (spreadsheets)
 - **Words** (in a table or bulleted list) to describe what problem must be solved
 - What must be accomplished? (e.g., tip a balance…functions, events)
 - What are the constraints? (e.g., rules, cost, size, time)
Third Step: Developing Strategies

- Playing
 - Play with the contest table and the kit parts
 - Create simple experiments
- Drawing
 - Sketch all the motions that might occur (use arrows to indicate motions)
 - ROUGH Sketch potential concepts (just stick figures)
 - Overlay sketches and search for patterns and AHAs!
- Reading
 - Study past 2.007 contests
 - Study construction equipment, websites of mechanisms and other robot contests.
- Writing
 - Write a story about how the contest was won.....imagine the future!
 - The FRDPARRC Table is a fantastic catalyst
- Arithmetic (analysis)
 - Analyze the effectiveness of different scoring methods with a sensitivity study
 - Create time/motion studies of the table
 - Investigate geometric packaging options
 - Sketch free-body-diagrams to understand how the forces flow within the system
- Load your mind with information
 - let your bio-neural-net start creating broad overall pictures of what gets the most done with the least effort
Third Step Example:

Strategies for The MIT and the Pendulum!

<table>
<thead>
<tr>
<th>Functional Requirements</th>
<th>Possible Design Parameters (Concept’s FRs)</th>
<th>Analysis</th>
<th>References</th>
<th>Risk</th>
<th>Counter-measures</th>
</tr>
</thead>
</table>
| **Score with balls** | 1) Acquire balls and move them into the goal
 2) **Knock all balls down and pick up and deposit in goal**
 3) Bat them into the goal | 1) Linear motion
 2) Linear motion, Power to raise the balls to the goal
 3) Trajectories, Conservation of momentum | 1) 8.01 text
 2) Past 2.007 contests
 3) Ball shooters from past contests | 1) Opponent knocks down balls
 2) Machine becomes to big, opponent blocks
 3) Balls are too large and heavy | 1) Acquisition device must also be able to pick up from the ground
 2) Gather a few, Set up blocking gate
 3) Ball on ramp, pinball shooter |
| **Score with pendulum** | 1) Actuate from ground
 2) Actuate from pendulum | ? | ? | ? | ? |
| **Block opponent from scoring** | 1) Knock all their balls down
 2) Anchor the pendulum | ? | ? | ? | ? |

© 2000 Alexander Slocum
Fourth Step: **Developing Concepts**

- A *concept* is a vision of how one could actually accomplish the **Strategy**:
 - Words to describe what the concept must do, and how it will work
 - Ideally in simple tabular form, like a FRDPARRC Table
 - Simple sketch
 - A simple hand-drawn isometric figure often suffices
 - A simple solid model can also be very useful
 - A sketch model made from simple materials can also be very useful
 - First-Order-Analysis
 - Spreadsheet-based time and motion study
 - More detail based on better estimates of machine size…
 - Preliminary power, accuracy, or stress calculations
 - More detail based on better estimates of machine weight…
 - The design engineer needs to take care to propose a concept in just enough detail to be assured that it could indeed be implemented

- **Example**: Concepts for **Knock all balls down and pick up and deposit in goal Strategy**
 - **Concept A** for **Strategy 1**: Knock down the balls and cylinders and the drive around picking up objects and deposit them into the goal one-by-one, so as to avoid complexity or jamming
 - After scoring with objects, the vehicle could go and actuate the pendulum
 - **Concept B** for **Strategy 1**: Gather the objects using a combine-like harvester that collects the objects and dumps them into a bin, and then drives over and raises the bin and dumps it into the scoring goal
 - After scoring with objects, the vehicle could go and actuate the pendulum

© 2000 Alexander Slocum
Fourth Step Example:

Concepts for the Knock Down Balls Strategy

<table>
<thead>
<tr>
<th>Functional Requirements (Distilled from Strategy’s DPs)</th>
<th>Possible Design Parameters (Modules FR’s)</th>
<th>Analysis</th>
<th>References</th>
<th>Risk</th>
<th>Counter-measures</th>
</tr>
</thead>
</table>
| Knock all balls down and pick up and deposit in goal | 1) Knock down, pick up and score one at a time
2) Combine harvester | 1) Time/Motion study, Friction/slip, Linkage design
2) Friction, slip, linkage design | 8.01 text and Past 2.007 contests. Farm equipment websites | 1) Not enough time to make multiple trips
2) Gather bin is too large | 1) Gather 2 or 3 objects
2) Gather 2 or 3 objects |
| Actuate pendulum from ground | 1) Vehicle knocks pendulum as it drives by
2) Fixed-to-ground spinning actuator | ? | ? | ? | ? |
| Block opponent | 1) Molestabot
2) Pendulum clamp | ? | ? | ? | ? |

© 2000 Alexander Slocum
Fifth Step: Developing Modules

- A module is a subassembly that has a defined envelope and specific inputs and outputs that can be engineered, built, and tested and then assembled with other modules to implement the concept.
 - Pick any module, and you will also get sub-modules.
 - Example: Powertrain: Transmission, Motors, Crawler tracks.
 - Hence the term “module” implies a granularity of detail.
- Words to describe what the module must do, and how it will work (FRDPAARC):
 - Drawings:
 - Initially a simple hand-drawn isometric will suffice.
 - There may be many different ways of designing the module.
 - The process of strategy, concept, module, components can be applied again!
 - First-Order- and Detailed-Analysis:
 - Motion, power, accuracy, stress…
 - Greater detail as the module detail increases.
- Developing Modules is the first part of what some called the “embodiment” phase.
- Example: Modules for the Combine harvester Concept:
 - Module 1 for Concept B: Gatherer.
 - Module 2 for Concept B: Bin.
 - Module 3 for Concept B: Deposit mechanism.
 - Module 4 for Concept B: Vehicle.
Fifth Step Example:

Modules for the Combine Harvester Concept

<table>
<thead>
<tr>
<th>Functional Requirements (Distilled from Concept’s DPs)</th>
<th>Possible design Parameters (Components’ FRs)</th>
<th>Analysis</th>
<th>References</th>
<th>Risk</th>
<th>Counter-measures</th>
</tr>
</thead>
</table>
| **Harvest objects** | 1) Rotary paddles or brush
2) Reciprocating paddle
3) Crab-claws | 1) Angular acceleration
2) Linkages
3) Triggers | 1) Street sweepers, Harvesters
2) Hungry Hippos game
3) Crabs | 1) Objects jam
2) Complexity
3) Complexity | 2) Reversible, or raise and lower
2) Single central arm to make T
3) Rotary system |
| **Bin** | 1) Passive half-cylinder hands
2) Actuated fingers | ? | ? | ? | ? |
| **Deposit mechanism** | 1) Conveyor
2) Raise & dump | ? | ? | ? | ? |
| **Vehicle** | 1) Crawler treads
2) 4WD | ? | ? | ? | ? |

© 2000 Alexander Slocum
Sixth Step: Developing Components

• A component is a sub-assembly or a machine element that is used in a module
 – Words to describe what the component must do, and how it will work
 • Ideally in simple tabular form, like a FRDPARRC Table
 – Drawings
 • Initially a simple hand-drawn isometric will suffice
 – There may be many different ways of designing the component
 » The process of strategy, concept, module, components can be applied again!
 • A solid model (part drawing) will eventually need to be created
 – Detailed engineering analysis
 • Motion, power, accuracy, stress, corrosion…
 – This is the super detailed phase of design
Sixth Step Example:

Components for the Reciprocating Paddle Module

<table>
<thead>
<tr>
<th>Functional Requirement's (Distilled from Module's DPs)</th>
<th>Possible design Parameters</th>
<th>Analysis</th>
<th>References</th>
<th>Risk</th>
<th>Counter-measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linkage</td>
<td>1) Revolute joint linkage</td>
<td>1) 4-bar synthesis & force analysis</td>
<td>Freshman physics, Chapter 4 of this book</td>
<td>1) Too simple motion</td>
<td>1) Use option 2, or a paddle</td>
</tr>
<tr>
<td></td>
<td>2) Revolute & prismatic linkage</td>
<td>2) Trigonometry & force analysis</td>
<td></td>
<td>2) Complexity</td>
<td>2) Make one single center linkage</td>
</tr>
<tr>
<td>Paddle</td>
<td>1) Bent sheet metal</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>2) Welded truss</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2) Metal pins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actuator</td>
<td>1) Screwdriver motor</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>2) Piston</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What else?…

© 2000 Alexander Slocum

1-25
Patterns from the Process: Repeats

- Notice how each Strategy’s Functional Requirements will each generate one or more Design Parameters (Concepts)…
 - Notice how each Concept’s Functional Requirements will each generate one or more Design Parameters (Modules)…
 - Notice how each Module’s Functional Requirements will each generate one or more Design Parameters (Components)…

- Executing a systematic design process can help you develop a rapid design reflex:
 - Rapidly and effectively solve design problems with a minimum of floundering!

- As you take more and more trips around the sun, the design process and a rapid design reflex becomes hard-wired into your bio-neural-net!