Erosive Wear

• Several different kinds of erosive wear
 – Solid particle impingement
 – Impingement of liquid droplets
 – Flow of hot gases
 – Cavitation of liquid media due to collapsing bubbles
Erosive Wear Due to Solid Particle Impingement

• Useful Applications
 – Grit blasting
 – Abrasive cutting (typically with water)
 – Water jet cutting (demo in the lab)
Erosive Wear Due to Solid Particle Impingement

• Applications adversely affected by erosion
 – Polymer processing machines and others
 – Coal plants (transport of pulverized coal)
 – Gas turbines
 – Power plants
 – Pipelines
 – Ship propellers
 – Aircraft
 • Windshield
 • Wings
 • Propellers
 • Rotors
• Erosion as a function of the following variables:
 Ductility of material being eroded
 Microstructure
 Velocity of particles
 Impingement angle
 Particle size
 Hardness of particles
 Strength of particles
 Temperature
Erosive Wear Due to Solid Particle Impingement

- Roughly proportional to V^n, where n can be 1.7 to 2.8 for ductile metals and 1.4 to 5.1 for brittle materials
- Erosion rate -- (1/250) to (1/1000) by weight of abrasives
- Angle dependence -- around 20$^\circ$ for ductile materials and around 90$^\circ$ for brittle materials
- Particle size dependence -- Once it exceeds a certain size, it is independent of the particle size, similar to abrasive wear.
- Temperature dependence is different as a function of material properties. In general, the erosion rate of ductile metals decreases with increase in temperature.
- Erosion rate, in general, decreases with increase in hardness and toughness.
Model of Erosive Wear of Metals

- Cutting model of Finnie

\[m\ddot{x} + p\psi bx = 0 \]
\[m\ddot{y} + pJ\psi by = 0 \]
\[I\ddot{\phi} + p\psi b\phi = 0 \]

\[\psi = \frac{\ell}{y_t} \]

\(J \) – ratio of vertical to horizontal force component
\(p \) - constant horizontal component of contact stress
Erosion of Ductile Materials

• Erosive Wear Volume vs Velocity (Finnie Model)

\[W = \left(\frac{\rho}{p \psi} \frac{M U^2}{J} \right) \frac{J \cos^2 \alpha}{6} \]
Erosion of Brittle Materials

• Transition from ring cracking to plastic indentation cracking
 – Yielding

 \[a = \left(\frac{4kLR}{3E} \right)^{1/3} \]

 \[\sigma_o = \frac{3L}{2\pi a^2} \]

 \[L_y = B_2 \left(\frac{k}{E} \right)^2 H^3 R^2 \]
 – Hertzian fracture load for large indentation
 \[L_f = B_1 R_n \]
Erosion of Brittle Materials

• Critical Radius

\[R_c = B \left(\frac{E}{k} \right)^2 \frac{1}{H^3} \]
Erosion of Brittle Materials

• Loading due to Impact of Sphere