“An Industrial Example of Oxide Etch Process Control and Optimization”

Spring 2007

Jing Yao
Kai Meng
Yi Qian
Agenda

• Plasma Etch Process physics
• Industrial Practices
 – SPC Practice
 – A Process Improvement Experiment
• Proposed DOE and RSM methods
• Process control improvements and recommendations
Layered Wafer Manufacturing Process

• 3 basic operations:
 – Film Deposition
 – Photolithography
 – Etch

• This cycle is repeated to build up various layers in the devices.
Types of Etching

• Etch techniques
 – Wet etch (Isotropic)
 – Dry etch / Plasma etch (Anisotropic)

Anisotropy is critical in submicron feature fabrication!
Plasma Etching Steps

- Plasma etching uses RF power to drive material removal by chemical reaction

- Steps:
 - Formation of active gas species, e.g. \(\text{CF}_4 + e^- \rightarrow \text{CF}_3^+ + \text{F} + 2e^- \)
 - Transport of the active species to the wafer surface
 - Reaction at the surface
 \(\text{SiO}_2 + 4\text{F} \rightarrow \text{SiF}_4 + \text{O}_2 \)
 - Pump away volatile products
Physical vs Chemical Etching

<table>
<thead>
<tr>
<th></th>
<th>Physical Method</th>
<th>Chemical Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism</td>
<td>Ion Bombardment</td>
<td>Chemical Reaction</td>
</tr>
<tr>
<td>Etch Rate</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Selectivity</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Bombardment-induced damage</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Anisotropy</td>
<td>High</td>
<td>Low</td>
</tr>
</tbody>
</table>

- Industry often uses hybrid technique: physical method to enhance chemical etching
- This gives anisotropic etch profile, reasonably good selectivity, and moderate bombardment-induced damage.
Plasma Etch Parameters

• Gas chemistry
 – Fluorocarbon gases (C$_4$F$_6$, CF$_4$, C$_4$F$_8$, etc)
 Atomic F is active etchant for SiO$_2$
 SiO$_2$ + 4F \rightarrow SiF$_4$ + O$_2$
 Carbon reacts with oxygen to form passivation layer on Si \rightarrow provides selectivity
 – O$_2$: Under certain level, O$_2$ scavenge C in Fluorocarbon, results in higher F concentration \rightarrow Higher etch rate
 – Ar: Ar$^+$ ion beam enhances chemical reaction
Plasma Etch Parameters

- **Pressure**
 - Low pressure reduces ion-neutral collision on sidewalls (lateral etch), enhances anisotropic etching

- **Bias Power**
 - Increase bias power enhances physical bombardment of ions

- **Etch Time**

- **Temperature**
Critical Issues

- Anisotropy
- Selectivity
- Microscopic Uniformity
- Etch Depth
- Critical Dimension (CD)

Image removed due to copyright restrictions. Please see http://www.mems-exchange.org/catalog/P3431/file/f38826bf4266f95d6e054553/thumbnail?600
Background

• Industry Practices in a DRAM wafer fabrication plant in Singapore

• Current Technology:
 – 95nm 1GB DRAM on 200mm wafers
 – 78nm 1GB DRAM on 300mm wafers

• Information source
 – Interview with process engineer
 – Scaled data based on experiments data
 (actual data unknown)
Focused Output

• Etch Depth
 – Measuring Method
 • Test wafer ONLY!
 – Over-etch on test wafer
 – Cost
 • 5 sites measurement
 – Percentage over-etch on test wafer
 • 20%-60% over-etch on test wafer
 • Selectivity

• Critical Dimension
 – Measuring Method
 • Test or production wafer
 • 5 sites measurement
SPC Practice

- SPC analysis tools are installed in all production machines
 - X-bar chart and R chart

- Different test methods for different outputs
 - Etch Depth
 - Insert test wafer into production lots
 - Infrequent: ~200 hours
 - Increase frequency when special attention needed
 - Critical Dimension
 - Test 1 wafer per lot (25 wafers)
 - 5 sites average
SPC Practice

- Rules: similar to Western Electrical Handbook rules
- UCL/LCL are set by process engineer
 - Based on USL/LSL
 - UCL/LCL are little bit tighter than USL/LSL
 - Tighten UCL/LCL based on experience
 - UCL/LCL are not based on standard deviation!
- Process pass SPC most of the time
- Stop a machine when a measurement is outside UCL/LCL, other rules mostly ignored
- Slow response
SPC Improvement

- Set UCL/LCL based on sample standard deviation
- Use more effective control chart, like CUSUM or EWMA chart, to improve response time
- Use multivariate process control
A Process Improvement Experiment

• Problem
 – Under-etch
 – Discovered by quality assurance from finished products
 – Process improvement is necessary because no issues found on the machine

• Approach
 1. Focus on two inputs (C_4F_6 Flow Rate, Bias Power)
 2. Vary inputs one step away from current value
 3. Test with all inputs combinations
 4. Change third input (Time)
 5. Repeat 1 to 3
 6. Find the best result
A Process Improvement Experiment

- 1 wafer, no replicates
- 5 sites average

Goal:
- CD: 100 ± 5 nm
- Etch Depth: 1.4 um with 60%~70% over etch on test wafer [2.25um, 2.4 um]

<table>
<thead>
<tr>
<th>Etch Depth (um)</th>
<th>C4F6 (sccm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.5</td>
<td>15</td>
</tr>
<tr>
<td>1300</td>
<td>1.72</td>
</tr>
<tr>
<td>1400</td>
<td>2.08</td>
</tr>
<tr>
<td>1500</td>
<td>2.56</td>
</tr>
</tbody>
</table>

200 sec

<table>
<thead>
<tr>
<th>CD (nm)</th>
<th>C4F6 (sccm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.5</td>
<td>15</td>
</tr>
<tr>
<td>1300</td>
<td>100</td>
</tr>
<tr>
<td>1400</td>
<td>110</td>
</tr>
<tr>
<td>1500</td>
<td>118</td>
</tr>
</tbody>
</table>

190 sec

<table>
<thead>
<tr>
<th>C4F6 (sccm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.5</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>15.5</td>
</tr>
<tr>
<td>1300</td>
</tr>
<tr>
<td>1400</td>
</tr>
<tr>
<td>1500</td>
</tr>
</tbody>
</table>

sccm : Standard Cubic Centimeters per Minute
A Process Improvement Experiment

- A combination of DOE and OFAT
 - Rely on theoretical study and experience
- Find an optimal based on tested input combinations
- No Response Surface analysis
- No replicates or center points
 - Hard to prove model accuracy
- No variance study
- Confidence Level unknown!
Experimental Design

- **Bias Power and C\textsubscript{4}F\textsubscript{6}**
 - Central composite design
 - 3 levels
- **Etching Time**
 - 2 levels

<table>
<thead>
<tr>
<th>Factor</th>
<th>Actual test levels (coded test level)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(-1)</td>
</tr>
<tr>
<td>X1-Bias Power</td>
<td>1300</td>
</tr>
<tr>
<td>X2-C4F6</td>
<td>14.5</td>
</tr>
<tr>
<td>X3-Etching Time</td>
<td>190</td>
</tr>
</tbody>
</table>
Run Data

<table>
<thead>
<tr>
<th>Trial</th>
<th>Bias Power</th>
<th>C4F6</th>
<th>Time</th>
<th>Etch Depth (um)</th>
<th>Critical Dimension (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1.72</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>2.08</td>
<td>110</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>2.56</td>
<td>118</td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>1.68</td>
<td>95</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2.01</td>
<td>103</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2.45</td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1.56</td>
<td>88</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1.91</td>
<td>96</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2.41</td>
<td>104</td>
</tr>
<tr>
<td>10</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1.63</td>
<td>98</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>2.00</td>
<td>106</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>2.50</td>
<td>114</td>
</tr>
<tr>
<td>13</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
<td>1.60</td>
<td>93</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>1.95</td>
<td>100</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>2.37</td>
<td>106</td>
</tr>
<tr>
<td>16</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1.50</td>
<td>85</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>1.87</td>
<td>94</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>2.28</td>
<td>100</td>
</tr>
</tbody>
</table>

Note: each run data is the mean of 5 sites average on 1 wafer.
Response Models

• Second order polynomial models
 – models built using coded variables
 – no transformations of output variables attempted

\[Y = b_0 + \sum_{i=1}^{3} b_i X_i + \sum_{j=i+1}^{3} \sum_{i=1}^{3} b_{ij} X_i X_j + \sum_{i=1}^{3} b_{ii} X_i^2 \]
Model Evaluation

- RSM fitting
 - ANOVA performed
 - Each output model claimed significant at >99.8% confidence level or higher

- Regression coefficients shown for significant terms
Etch Depth

- Response Surface model
 \[ED = 1.970 + 0.407x_1 - 0.080x_2 + 0.038x_3 + 0.052x_1^2 \]
- Residual

![Residual Plots for Etch Depth](image)

- Normal Probability Plot of the Residuals
- Residuals Versus the Fitted Values
- Histogram of the Residuals
- Residuals Versus the Order of the Data
Etch Depth – Contour Plot

- Etch Depth most sensitive to Bias Power
- Bias Power ↑, or Time ↑, or \(C_4F_6 \) ↓ → Etch Depth ↑
Critical Dimension

- **Response Surface model**
 \[CD = 101.111 + 7.750x_1 - 6.583x_2 + 1.556x_3 \]

- **Residual**
Critical Dimension – Contour Plot

- **CD most sensitive to Bias Power & C₄F₆**
- **Bias Power↑, or Time↑, or C₄F₆↓ → CD↑**
Process Optimization

- Optimization criteria for Oxide etch and the best values attainable within the resulting optimized factor space

<table>
<thead>
<tr>
<th>Factor</th>
<th>Optimization Criteria</th>
<th>Best Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etch Depth</td>
<td>$2.25 \mu m \leq CD \leq 2.40 \mu m$</td>
<td>$2.25 \mu m$</td>
</tr>
<tr>
<td>Critical Dimension</td>
<td>$100 \pm 5nm$</td>
<td>$100nm$</td>
</tr>
</tbody>
</table>

- Optimal Input

<table>
<thead>
<tr>
<th></th>
<th>X1-Bias Power</th>
<th>X2-C4F6</th>
<th>X3-Etching Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>1487 W</td>
<td>15.48 sccm</td>
<td>190 sec</td>
</tr>
<tr>
<td>Actual</td>
<td>1500 W</td>
<td>15.5 sccm</td>
<td>190 sec</td>
</tr>
</tbody>
</table>
2³ Full Factorial Design

- Only consider linear relationships
- Drop other 10 test points (possible test points for lack-of-fit)

<table>
<thead>
<tr>
<th>Trial</th>
<th>Bias Power</th>
<th>C4F6</th>
<th>Time</th>
<th>Etch Depth (µm)</th>
<th>Critical Dimension (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>1.72</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td>2.56</td>
<td>118</td>
</tr>
<tr>
<td>3</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1.56</td>
<td>88</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2.41</td>
<td>104</td>
</tr>
<tr>
<td>5</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>1.63</td>
<td>98</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>2.50</td>
<td>114</td>
</tr>
<tr>
<td>7</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1.50</td>
<td>85</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>2.28</td>
<td>100</td>
</tr>
</tbody>
</table>
Etch Depth

- Predicted Value \((p<0.01)\)
 \[
 ED = 2.020 + 0.418x_1 - 0.083x_2 + 0.043x_3
 \]
- Residual

![Residual Plots for Etch Depth]

- Normal Probability Plot of the Residuals
- Residuals Versus the Fitted Values
- Histogram of the Residuals
- Residuals Versus the Order of the Data
Critical Dimension

- Predicted Value (p<0.01)
 \[CD = 100.875 + 8.125x_1 - 6.625x_2 + 1.625x_3 \]

- Residual
DOE Improvement

• Adding replicates at center points
 – Use to assess pure error (‘noise’) as percentage of the response
 – Assess lack of fit

• Use Factorial Design
 – Current practice 18 trails
 – 2^3 with 4 center points 12 trails
 – 3^{3-1}_{III} with 6 center points 15 trails

• Analyze Variation
 – consider variation at the desired value

• Randomize run order
 – Esp. in replicates to minimize the trend
Process Control Recommendations

- **SPC Analysis**
 - Use more effective control chart, like CUSUM or EWMA chart
 - Use multivariate process control

- **DOE and RSM optimization**
 - Adding replicates at center points
 - Use Factorial Design
 - Analyze Variation
 - Randomize run order
Thank You!