2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303)
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
Control of Manufacturing Processes

Subject 2.830/6.780/ESD.63
Spring 2008
Lecture #6

Sampling Distributions and Statistical Hypotheses

February 26, 2008
Statistics

The field of statistics is about reasoning in the face of uncertainty, based on evidence from observed data.

• Beliefs:
 – Probability Distribution or Probabilistic model form
 – Distribution/model parameters

• Evidence:
 – Finite set of observations or data drawn from a population (experimental measurements/observations)

• Models:
 – Seek to explain data wrt a model of their probability
Topics

• Sampling Distributions \((\chi^2 \text{ and Student’s-t})\)
 – Uncertainty of Parameter Estimates
 – Effect of Sample Size
 – Examples of Inference

• Inferences from Distributions
 – Statistical Hypothesis Testing
 – Confidence Intervals

• Hypothesis Testing

• The Shewhart Hypothesis and Basic SPC
 – Test statistics - xbar and S
Sampling to Determine Parent Probability Distribution

• Assume Process Under Study has a Parent Distribution \(p(x) \)
• Take “\(n \)” Samples From the Process Output \((x_i) \)

• Look at Sample Statistics (e.g. sample mean and sample variance)
• Relationship to Parent
 • Both are Random Variables
 • Both Have Their Own Probability Distributions
• Inferences about Process via Inferences about the Parent Distribution
Moments of the Population vs. Sample Statistics

Underlying model or Population Probability

- Mean
\[\mu = \mu_x = E(x) \]

- Variance
\[\sigma^2 = \sigma^2_{xx} = E[(x - \mu_x)^2] \]

- Standard Deviation
\[\sigma = \sqrt{\sigma^2} \]

- Covariance
\[\sigma_{xy} = E[(x - \mu_x)(y - \mu_y)] = E(xy) - E(x)E(y) \]

- Correlation Coefficient
\[\rho_{xy} = \frac{\sigma^2_{xy}}{\sigma_x \sigma_y} = \frac{\text{Cov}(xy)}{\sqrt{\text{Var}(x)\text{Var}(y)}} \]

Sample Statistics

- Mean
\[\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \]

- Variance
\[s^2 = s^2_x = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 \]

- Standard Deviation
\[s = \sqrt{s^2} \]

- Covariance
\[s^2_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) \]

- Correlation Coefficient
\[r_{xy} = \frac{s^2_{xy}}{s_x s_y} \]
Sampling and Estimation

• Sampling: act of making observations from populations

• Random sampling: when each observation is identically and independently distributed (IID)

• Statistic: a function of sample data; a value that can be computed from data (contains no unknowns)
 – Average, median, standard deviation
 – Statistics are by definition also random variables
Population vs. Sampling Distribution

Population ("true") probability density function:
\[x \sim \text{N}(\mu, \sigma^2) \]

Sample Mean (statistic):
\[\bar{x} = \frac{1}{n} \sum x_i \]

Sample Mean Distribution (sampling distribution):
\[\bar{x} \sim \text{N}(\mu, \sigma^2 / n) \]
Sampling and Estimation, cont.

- A **statistic** is a random variable, which itself has a **sampling (probability) distribution**
 - I.e., if we take multiple random samples, the value for the statistic will be different for each set of samples, but will be governed by the same sampling distribution
- If we know the appropriate sampling distribution, we can **reason** about the underlying population based on the observed value of a statistic
 - e.g. we calculate a sample mean from a random sample; in what range do we think the actual (population) mean really sits?
Estimation and Confidence Intervals

- **Point Estimation:**
 - Find best values for parameters of a distribution
 - Should be
 - Unbiased: expected value of estimate should be true value
 - Minimum variance: should be estimator with smallest variance

- **Interval Estimation:**
 - Give bounds that contain actual value with a given probability
 - Must know sampling distribution!
Sampling and Estimation – An Example

- Suppose we know that the thickness of a part is normally distributed with std. dev. of 10:

 \[T \sim N(\mu_{\text{unknown}}, 100) \]

- We sample \(n = 50 \) random parts and compute the mean part thickness:

 \[\bar{T} = \frac{1}{n} \sum_{i=1}^{n} T_i = 113.5 \]

 \[E(\bar{T}) = \mu \]
 \[\text{Var}(\bar{T}) = \sigma^2/n = 100/50 \]
 Normally distributed

- First question: What is distribution of the mean of \(T = \bar{T} \)?

 \[\bar{T} \sim N(\mu, 2) \]

- Second question: can we use knowledge of \(\bar{T} \) distribution to reason about the actual (population) mean \(\mu \) given observed (sample) mean?
Confidence Intervals: Variance Known

- We know σ, e.g. from historical data
- Estimate mean in some interval to $(1-\alpha)100\%$ confidence

\[
\bar{x} - z_{\alpha/2} \cdot \left(\frac{\sigma}{\sqrt{n}}\right) \leq \mu \leq \bar{x} + z_{\alpha/2} \cdot \left(\frac{\sigma}{\sqrt{n}}\right)
\]

Remember the unit normal percentage points
Apply to the sampling distribution for the sample mean
Example, Cont’d

• Second question: can we use knowledge of \(\bar{T} \) distribution to reason about the actual (population) mean \(\mu \) given observed (sample) mean?

\[
\bar{T} \sim N\left(\mu, \frac{100}{n}\right)
\]

95% confidence interval, \(\alpha = 0.05 \)

\[
\mu = \hat{\mu} \pm z_{0.025} \cdot \text{std.dev.}(\bar{T})
\]

\[
= \hat{\mu} \pm 1.96 \cdot \sqrt{2}
\]

\[
= 113.5 \pm 2.77
\]

~95% of distribution lies within +/- 2\(\sigma \) of mean
Reasoning & Sampling Distributions

• Example shows that we need to know our sampling distribution in order to reason about the sample and population parameters

• Other important sampling distributions:
 – Student’s-t
 • Use instead of normal distribution when we don’t know actual variation or σ
 – Chi-square
 • Use when we are asking about variances
 – F
 • Use when we are asking about ratios of variances
Sampling: The Chi-Square Distribution

If \(x_i \sim N(0, 1) \) for \(i = 1, 2, \ldots, n \) and
\[
y = x_1^2 + x_2^2 + \cdots + x_n^2,
\]
then \(y \sim \chi_n^2 \) or chi-square with \(n \) degrees of freedom.

- Typical use: find distribution of variance when mean is known
- Ex:
\[
x_i \sim N(\mu, \sigma^2)
\]
\[
\frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2
\]

So if we calculate \(s^2 \), we can use knowledge of chi-square distribution to put bounds on where we believe the actual (population) variance sits.

Note: \(E(\chi_n^2) = n \)
Sampling: The Chi-Square Distribution

\[
\frac{(n - 1) s^2}{\sigma^2} \sim \chi^2_{n-1}
\]

\[
E(\chi^2_n) = n
\]
Sampling: The Student’s-t Distribution

If \(z \sim N(0, 1) \) then \(\frac{z}{y/k} \sim t_k \) with \(y \sim \chi^2_k \) is distributed as a student t with \(k \) degrees of freedom.

- Typical use: Find distribution of average \(\bar{x} \) when \(\sigma \) is NOT known

- Consider \(x \sim N(\mu, \sigma^2) \). Then

\[
\frac{\bar{x} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)
\]

\[
\frac{\bar{x} - \mu}{s / \sqrt{n}} \sim N(0, 1)
\]

\[
\frac{s / \sigma}{\sqrt{\frac{1}{n-1} \chi^2_n}} \sim t_{n-1}
\]

- This is just the “normalized” distance from mean (normalized to our estimate of the sample variance)
Sampling: The Student-t Distribution

![Graph showing the Student-t distribution with different sample sizes (N=3, N=10, N=100) and the Standard Normal distribution.](image)
Back to Our Example

• Suppose we do not know either the variance or the mean in our parts population:
 \[T \sim N(\mu, \sigma^2) = N(\mu_{\text{unknown}}, \sigma^2_{\text{unknown}}) \]

• We take our sample of size \(n = 50 \), and calculate
 \[
 \bar{T} = \frac{1}{50} \sum_{i=1}^{50} T_i = 113.5 \\
 s_T^2 = \frac{1}{49} \sum_{i=1}^{50} (T_i - \bar{T})^2 = 102.3
 \]

• Best estimate of population mean and variance (std.dev.)?
 \[
 \hat{\mu} = \bar{T} = 113.5 \\
 \hat{\sigma} = \sqrt{s_T^2} = 10.1
 \]

• If had to pick a range where \(\mu \) would be 95% of time?

 Have to use the appropriate sampling distribution:
 In this case – the t-distribution (rather than normal distribution)
Confidence Intervals: Variance Unknown

- Case where we don’t know variance \textit{a priori}
- Now we have to estimate not only the mean based on our data, but also estimate the variance
- Our estimate of the mean to some interval with (1-α)100% confidence becomes

$$\bar{x} - t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}} \leq \mu \leq \bar{x} + t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}}$$

Note that the \textit{t} distribution is slightly wider than the normal distribution, so that our confidence interval on the true mean is not as tight as when we know the variance.
Example, Cont’d

• Third question: can we use knowledge of \bar{T} distribution to reason about the actual (population) mean μ given observed (sample) mean – even though we weren’t told σ?

The *t* distribution is slightly wider than gaussian distribution.

- $n = 50$
- $\bar{T} \sim t$ with $k = 49$ d.o.f.

95% confidence interval:

$$
\mu = \hat{\mu} \pm t_{0.025} \frac{s_T}{\sqrt{n}}
$$

$$
= 113.5 \pm 2.01 \cdot 10.1 / \sqrt{50}
$$

$$
= 113.5 \pm 2.87
$$

$\hat{\mu} = \bar{T} = 113.5$
Once More to Our Example

• Fourth question: how about a confidence interval on our estimate of the variance of the thickness of our parts, based on our 50 observations?
Confidence Intervals: Estimate of Variance

\[\frac{(n - 1)s^2}{\chi^2_{\alpha/2,n-1}} \leq \sigma^2 \leq \frac{(n - 1)s^2}{\chi^2_{1-\alpha/2,n-1}} \]

The appropriate sampling distribution is the Chi-square. Because \(\chi^2 \) is asymmetric, c.i. bounds not symmetric.

\[\frac{(n - 1)s^2}{\sigma^2} \sim \chi^2_{n-1} \]
Example, Cont’d

- Fourth question: for our example (where we observed \(s_T^2 = 102.3 \)) with \(n = 50 \) samples, what is the 95% confidence interval for the population variance?

\[
\frac{(50-1)102.3}{\chi^2_{0.025,49}} \leq \sigma^2 \leq \frac{(50-1)102.3}{\chi^2_{0.975,49}}
\]

\[
\frac{5012.7}{70.22} \leq \sigma^2 \leq \frac{5012.7}{31.55}
\]

\[
71.4 \leq \sigma^2 \leq 158.1
\]
Sampling: The F Distribution

If \(y_1 \sim \chi^2_u \) and \(y_2 \sim \chi^2_v \), then \(R = \frac{y_1/u}{y_2/v} \sim F_{u,v} \) is an \(F \) distribution with \(u, v \) degrees of freedom.

- Typical use: compare the spread of two populations
- Example:
 - \(x \sim N(\mu_x, \sigma^2_x) \) from which we sample \(x_1, x_2, \ldots, x_n \)
 - \(y \sim N(\mu_y, \sigma^2_y) \) from which we sample \(y_1, y_2, \ldots, y_m \)
 - Then

\[
\frac{s^2_x/\sigma^2_x}{s^2_y/\sigma^2_y} \sim F_{n-1,m-1} \quad \text{or} \quad \frac{\sigma^2_y}{\sigma^2_x} \sim \frac{s^2_x}{s^2_y} F_{n-1,m-1}
\]
Concept of the F Distribution

• Assume we have a normally distributed population
• We generate two different random samples from the population
• In each case, we calculate a sample variance s_i^2
• What range will the ratio of these two variances take? F distribution

Example:
• Assume $x \sim N(0,1)$
• Take 2 samples sets of size $n = 20$
• Calculate s_1^2 and s_2^2 and take ratio
 \[\frac{s_1^2}{s_2^2} \sim F_{19,19} \]
• 95% confidence interval on ratio
 \[F_{\frac{\alpha}{2}, 19,19} = F_{0.025, 19,19} = 2.53 \]
 \[F_{1-\frac{\alpha}{2}, 19,19} = F_{0.975, 19,19} = 0.40 \]
 Large range in ratio!
Use of the F Distribution

IM Run data: Velocity and Hold Changes

I.M. Hold Time Change

Low Hold Time

High Hold Time
Agenda

• Models for Random Processes
 – Probability Distributions & Random Variables
• Estimating Model Parameters with Sampling
• Key distributions arising in sampling
 – Chi-square, t, and F distributions
• Estimation: Reasoning about the population based on a sample
• Some basic confidence intervals
 – Estimate of mean with variance known
 – Estimate of mean with variance not known
 – Estimate of variance
• Next: Hypothesis tests
Statistical Inference and the Shewhart Hypothesis

• Statistical Hypotheses
 – Confidence of Predictions based on known or estimated pdf

• Relationship to Manufacturing Processes
Statistical Hypothesis

- e.g. hypothesize that mean has specific value
 - Based on Assumed Model (Distribution)
- Accept or reject hypothesis based on data and statistical model
 - i.e. based on degree of acceptable uncertainty or probability of error
Hypothesis Testing

• Given the hypothesis for the statistic ϕ (e.g. the mean)

\[
H_0: \phi = \phi_0 \\
H_1: \phi \neq \phi_0
\]

\[
\begin{cases}
H_0: \phi = \mu_0 \\
H_1: \phi \neq \mu_0
\end{cases}
\]

• No single sampled value $\hat{\phi}$ will equal ϕ_0

• How do we test the hypothesis given ϕ?
 – What is $p(\hat{\phi})$? (Sample Distribution?)
 – How well do we want to test H_0?
 • Significance
 • Confidence
The Test

- Assume a Distribution (e.g. $p(\hat{\phi})$ is Normal)

α is the significance of the test
Errors

• H_o is rejected when it is in fact true (Type I) (Significance)
 – $p = ?$

 $p = \alpha$ for two sided and $\alpha/2$ for one sided tests

• H_o is accepted when it is in fact false (Type II)
 – $p = ?$

 $= \beta$ … What is β?
Type II Errors

• Assume a shift in the true distribution $p(\hat{\phi})$ of δ

• Assess the probability that we fall in the acceptance region after a shift of δ occurred
Type II Errors

Region of Acceptance

\[\mu = \phi_0 \quad \mu = \phi_0 + \delta \]

area = \beta
Calculating β

Assuming a normally distributed Statistic

\[
\beta = \Phi\left(Z_{1-\alpha/2} - \Delta\right) - \Phi\left(Z_{\alpha/2} - \Delta\right)
\]

\[
\Delta = \frac{\delta}{\sigma/\sqrt{n}} \quad \text{Normalized deviation}
\]
Applications

• Tests on the Mean
 – Is the mean of “new” data the same as prior data (i.e. from the same distribution?)
 Or
 – Did a significant change occur?

• Variances of a Population
 – Is the variance of “new” data the same as prior data (i.e. from the same distribution?)

• What are the “parent distributions” if we only have sample data?
 – Sample distributions
Example: Average Weight

• Hypothesize that average weight of a population is 68 kg and \(\sigma = 3.6 \)
 – \(H_0: \mu = 68 \)
 – \(H_1: \mu \neq 68 \)
 – Assume an acceptance region of +- 1 kg
 – What is \(\alpha \) or significance of test?
 • Probability of a type I error
 – What is \(\beta \)
 • Probability of type II error
Significance from Interval

Take a sample of 36 weights for \overline{x}
Thus $\sigma_{\overline{x}} = 3.6/6 = 0.6$

$z_1 = \frac{(67 - 68)}{0.6} = -1.67$

$z_2 = \frac{(69 - 68)}{0.6} = +1.67$

$\alpha = P(Z < -1.67) + P(Z > 1.76) = 2P(Z < -1.67) = 0.095$

9.5% chance of rejecting H_0 even if true

Effect of increasing range?
Effect of increasing n?
β Error

Assume we must reject H_0 if $\mu < 66$ or $\mu > 70$

$$ i.e. \quad \beta = P(67 \leq xbar \leq 69) \text{ when } \mu = 70 $$

$$ \beta = P(-6.67 \leq Z \leq -2.22) = 0.0132 $$

1.3% chance of accepting H_0 when it is false

From symmetry - same result for $\mu = 66$

Effect of increasing range?

Effect of increasing n?
Operating Characteristic Curve
Dependence of α and β

Note that the expression for β: depends on α, n and δ

From Montgomery “Introduction to Statistical Quality Control, 4th ed. 2000

Curves for $\alpha = 0.05$
\[d = \frac{\delta}{\sigma} \]

Figure by MIT OpenCourseWare.
Some Typical Hypothesis

• Inference about Variance from Samples
 – Test Statistic?
 – Which Distribution to Use?

• Inference about Mean
 – Knowing σ
 – Not knowing σ
Summary

• Pick Significance Level α
• Determine an acceptable β
 – $(1-\beta)$ is call the “power” of the test

• What is the effect of the number of samples (n)?
On to *Process Control*

- How does all this relate to our problem?
- What assumptions must we make?
- What statistical tests should we use?
- What are the best procedures to use in a production environment?
"In-Control"

Each Sample is from Same Parent
“Not In-Control”

The Parent Distribution is \textbf{Not} The Same at Each Sample
“Not In-Control”

- Bi-Modal
- Mean Shift + Variance Change
- Mean Shift

Time
Xbar and S Charts

• Shewhart:
 – Plot \textit{sequential average} of process
 • Xbar chart
 • Distribution?

 – Plot sequential sample standard deviation
 • S chart
 • Distribution?
Conclusions

• Hypothesis Testing
 • Use knowledge of PDFs to evaluate hypotheses
 • Quantify the degree of certainty (α and β)
 • Evaluate effect of sampling and sample size

• Shewhart Charts
 • Application of Statistics to Production
 • Plot Evolution of Sample Statistics \bar{X} and S
 • Look for Deviations from Model