Control of
Manufacturing Processes

Subject 2.830/6.780/ESD.63
Spring 2008
Lecture #8

Process Capability &
Alternative SPC Methods

March 4, 2008
Agenda

• Control Chart Review
 – hypothesis tests: α, β and n
 – control charts: α, β, n, and average run length (ARL)

• Process Capability

• Advanced Control Chart Concepts
Average Run Length

- How often will the data exceed the ±3σ limits if Δμₓ = 0?

\[
\text{Prob}(x > \mu_x + 3\sigma_x) + \text{Prob}(x < \mu_x - 3\sigma_x) = 3 / 1000
\]
Detecting Mean Shifts: Chart Sensitivity

• Consider a real shift of $\Delta \mu_x$:

• How many samples before we can expect to detect the shift on the xbar chart?
Average Run Length

• How often will the data exceed the ±3σ limits if Δμₓ = +1σ?

\[
\text{Prob}(x > \mu_x + 2\sigma_x) + \text{Prob}(x < \mu_x - 4\sigma_x) = 0.023 + 0.001 = 24 / 1000
\]
Definition

• Average Run Length (arl): Number of runs (or samples) before we can expect a limit to be exceeded = $1/p_e$

- for $\Delta \mu = 0$ $\text{arl} = 3/1000 = 333$ samples
- for $\Delta \mu = 1\sigma$ $\text{arl} = 24/1000 = 42$ samples

Even with a mean shift as large as 1σ, it could take 42 samples before we know it!!!
Effect of Sample Size n on ARL

- Assume the same $\Delta \mu = 1\sigma$
 - Note that $\Delta \mu$ is an absolute value

- If we increase n, the Variance of $x\bar{b}$ decreases:
 \[\sigma_{x\bar{b}} = \frac{\sigma_x}{\sqrt{n}} \]

- So our $\pm 3\sigma$ limits move closer together
ARL Example

As n increases p_e increases so ARL decreases
Another Use of the Statistical Process Model: The Manufacturing -Design Interface

• We now have an empirical model of the process

How “good” is the process?
Is it capable of producing what we need?
Process Capability

• Assume Process is In-control
• Described fully by $xbar$ and s
• Compare to Design Specifications
 – Tolerances
 – Quality Loss
Design Specifications

- **Tolerances**: Upper and Lower Limits

![Diagram of Design Specifications]

- **Lower Specification Limit** (LSL)
- **Target** (x^*)
- **Upper Specification Limit** (USL)
Design Specifications

- **Quality Loss**: Penalty for Any Deviation from Target

\[QLF = L^*(x-x^*)^2 \]

How to Calibrate?

\[x^* = \text{target} \]
Use of Tolerances: Process Capability

- Define Process using a Normal Distribution
- Superimpose x^*, LSL and USL
- Evaluate Expected Performance
Process Capability

- Definitions

\[C_p = \frac{(USL - LSL)}{6\sigma} = \frac{\text{tolerance range}}{99.97\% \text{ confidence range}} \]

- Compares ranges only
- No effect of a mean shift
Process Capability: C_{pk}

$$C_{pk} = \min \left(\frac{(USL - \mu)}{3\sigma}, \frac{(LSL - \mu)}{3\sigma} \right)$$

= Minimum of the normalized deviation from the mean

• Compares effect of offsets
Cp = 1; Cpk = 1
Cp = 1; Cpk = 0
Cp = 2; Cpk = 1
Cp = 2; Cpk = 2
Effect of Changes

- In Design Specs
- In Process Mean
- In Process Variance

- What are good values of Cp and Cpk?
Cpk Table

<table>
<thead>
<tr>
<th>Cpk</th>
<th>z</th>
<th>$P<\text{LS}$ or $P>\text{USL}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>1E-03</td>
</tr>
<tr>
<td>1.33</td>
<td>4</td>
<td>3E-05</td>
</tr>
<tr>
<td>1.67</td>
<td>5</td>
<td>3E-07</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>1E-09</td>
</tr>
</tbody>
</table>
The “6 Sigma” problem

\[P(x > 6\sigma) = 18.8 \times 10^{-10} \]

\[C_p = 2 \]

\[C_{pk} = 2 \]
The 6 σ problem: Mean Shifts

$P(x>4\sigma) = 31.6 \times 10^{-6}$

Even with a mean shift of 2σ we have only 32 ppm out of spec

$C_p = 2$

$C_{pk} = 4/3$
Capability from the Quality Loss Function

QLF = L(x) = k*(x-x*)^2

Given L(x) and p(x) what is E{L(x)}?
Expected Quality Loss

\[E\{L(x)\} = E[k(x - x^*)^2] \]

\[= k \left[E(x^2) - 2E(xx^*) + E(x^*^2) \right] \]

\[= k\sigma_x^2 + k(\mu_x - x^*)^2 \]

Penalizes Variation

Penalizes Deviation
Process Capability

- The reality (the process statistics)
- The requirements (the design specs)
- Cp - a measure of variance vs. tolerance
- Cpk - a measure of variance from target
- Expected Loss - an overall measure of goodness
Xbar Chart Recap

• xbar - S (or R) charts
 – plot of sequential sample statistics
 – compare to assumptions
 • normal
 • stationary

• Interpretation
 – hypothesis tests on μ and σ
 – confidence intervals
 – “randomness”

• Application
 – Real-time decision making
Beyond Xbar

• Good Points
 – Simple and “transparent”
 – Enforces Assumptions
 • Normality (via Central Limit)
 • Independent (via long sampling times)

• Limitations
 – n>1 to get Xbar and S
 – ARL is typically large
 • Not very sensitive to small changes
 – Slow time response
Beyond Xbar

• What if n=1?
 – Have a Lot of Data
 – Want Fast Response to Changes

• How to Compute Control Chart Statistics?
 – Running Chart and Running Variance?
 – Running Average and Running Variance?
 – Running Average with Forgetting Factor

• How to Increase Sensitivity to Small, Persistent Mean Shift?
 – Integrate the Error
Chart Design:
n=1 Designs - Running Averages

• Sensitivity: Ability to detect small changes (e.g. mean shifts)
• Time Response: Ability to Catch Changes Quickly
• Noise Rejection?: Higher Variance
Xbar “Filtering”
Filtering

- Reduced Peaks
- Hides intermediate data
- Reduces the “frequency content” of the output
Independence and Correlation

- Independence: Current output does not depend on prior
- Correlation: Measure of Independence
 - e.g. auto correlation function

\[R_{xx}(\tau) = E[x(t)x(t + \tau)] \]
Correlation

\[R_{xx}(\tau) = E[x(t)x(t + \tau)] \]

For a linear 1st order system

\(\tau \approx 1 \text{ sec} \)

For an uncorrelated process
Sampling: Frequency and Distribution of Samples
Correlation and Sampling

- Taking samples beyond correlation time guarantees independence
Sampling and Averaging

• Sampling Frequency Affects
 – Time Response
 – Correlation

• Averaging
 – Filters Data
 – Slows Response
Alternative Charts: Running Averages

- More averages/Data
- Can use run data alone and average for S only
- Can use to improve resolution of mean shift

\[
\bar{x}_{Rj} = \frac{1}{n} \sum_{i=j}^{j+n} x_i \quad \text{Running Average}
\]
\[
S_{Rj}^2 = \frac{1}{n-1} \sum_{i=j}^{j+n} (x_i - \bar{x}_{Rj})^2 \quad \text{Running Variance}
\]
Specific Case: Weighted Averages

\[y_j = a_1 x_{j-1} + a_2 x_{j-2} + a_3 x_{j-3} + \ldots \]

• How should we weight measurements??
 – All equally? (as with Running Average)
 – Based on how recent?
 • e.g. Most recent are more relevant than less recent?
Consider an Exponential Weighted Average

Define a weighting function

\[W_{t-i} = r (1 - r)^i \]
Exponentially Weighted Moving Average: (EWMA)

\[A_i = r x_i + (1 - r) A_{i-1} \]

Recursive EWMA

\[\sigma_A = \sqrt{\left(\frac{\sigma_x^2}{n} \right) \left(\frac{r}{2 - r} \right) \left[1 - (1 - r)^{2t} \right]} \]

\[UCL, LCL = \bar{x} \pm 3 \sigma_A \]

for large \(t \)
Effect of r on σ multiplier

plot of $\frac{r}{(2-r)}$ vs. r

wider control limits
SO WHAT?

• The variance will be less than with xbar,

\[\sigma_A = \frac{\sigma_x}{\sqrt{n}} \sqrt{\left(\frac{r}{2 - r} \right)} = \sigma_{\overline{x}} \sqrt{\left(\frac{r}{2 - r} \right)} \]

• n=1 case is valid

• If r=1 we have “unfiltered” data
 – Run data stays run data
 – Sequential averages remain

• If r<<1 we get long weighting and long delays
 – “Stronger” filter; longer response time
EWMA vs. Xbar

\[r = 0.3 \]
\[\Delta \mu = 0.5 \sigma \]
Mean Shift Sensitivity
EWMA and Xbar comparison

Mean shift = .5 σ

\(n=5 \)
\(r=0.1 \)
Effect of r

$r=0.3$
Small Mean Shifts

• What if $\Delta \mu_x$ is small wrt σ_x?

• But it is “persistent”

• How could we detect?
 – ARL for xbar would be too large
Another Approach: Cumulative Sums

• Add up deviations from mean
 – A Discrete Time Integrator

\[C_j = \sum_{i=1}^{j} (x_i - \bar{x}) \]

• Since \(E\{x-\mu\} = 0 \) this sum should stay near zero
• Any bias in \(x \) will show as a trend
Mean Shift Sensitivity: CUSUM

\[C_i = \sum_{i=1}^{t} (x_i - \bar{x}) \]

Mean shift = 1\(\sigma\)

Slope cause by mean shift \(\Delta \mu\)
Control Limits for CUSUM

- Significance of Slope Changes?
 - Detecting Mean Shifts
- Use of v-mask
 - Slope Test with Deadband

\[d = \frac{2}{\delta} \ln \left(\frac{1 - \beta}{\alpha} \right) \]
\[\delta = \frac{\Delta \bar{x}}{\sigma_{\bar{x}}} \]
\[\theta = \tan^{-1} \left(\frac{\Delta \bar{x}}{2k} \right) \]

where
- \(k = \text{horizontal scale factor for plot} \)
Use of Mask

\[\theta = \tan^{-1}(\Delta\mu/2k) \]

k = 4:1; \(\Delta\mu = 0.25 \) \((1\sigma)\)

\[\tan(\theta) = 0.5 \text{ as plotted} \]
An Alternative

• Define the Normalized Statistic
 \[Z_i = \frac{X_i - \mu_x}{\sigma_x} \]
 Which has an expected mean of 0 and variance of 1

• And the CUSUM statistic
 \[S_i = \sum_{i=1}^{t} Z_i \]
 \[S_i = \frac{\sum_{i=1}^{t} Z_i}{\sqrt{t}} \]
 Which has an expected mean of 0 and variance of 1

Chart with Centerline = 0 and Limits = ±3
Example for Mean Shift = 1σ
Tabular CUSUM

- Create Threshold Variables:

\[
C_i^+ = \max[0, x_i - (\mu_0 + K) + C_{i-1}^+] \\
C_i^- = \max[0, (\mu_0 - K) - x_i + C_{i-1}^-]
\]

Accumulates deviations from the mean

\[K = \frac{|\Delta \mu|}{2} \]

\[\Delta \mu = \text{mean shift to detect}\]

\[H : \text{alarm level (typically 5} \sigma\)\]
Threshold Plot

- $\mu = 0.495$
- $\sigma = 0.170$
- $k=\frac{\delta \mu}{2} = 0.049$
- $h=5\sigma = 0.848$
Alternative Charts Summary

• Noisy Data Need Some Filtering
• Sampling Strategy Can Guarantee Independence
• Linear Discrete Filters have Been Proposed
 – EWMA
 – Running Integrator
• Choice Depends on Nature of Process
Summary of SPC

• Consider Process a Random Process
 – Can never predict precise value

• Model with $P(x)$ or $p(x)$
 – Assume $p(x,t) = p(x)$

• Shewhart Hypothesis
 – In-control = purely random output
 • Normal, independent stationary
 • “The best you can do!”
 – Not in-control
 • Non-random behavior
 • Source can be found and eliminated
The SPC Hypothesis

In-Control

Not In-Control

$p(y)$

Process