MIT 2.853/2.854
Introduction to Manufacturing Systems
Multi-Stage Control and Scheduling

Lecturer: Stanley B. Gershwin

Copyright ©2002-2016 Stanley B. Gershwin.
Definitions

- Events may be **controllable** or not, and **predictable** or not.

<table>
<thead>
<tr>
<th></th>
<th>controllable</th>
<th>uncontrollable</th>
</tr>
</thead>
<tbody>
<tr>
<td>predictable</td>
<td>loading a part</td>
<td>lunch</td>
</tr>
<tr>
<td>unpredictable</td>
<td>??</td>
<td>machine failure</td>
</tr>
</tbody>
</table>
Definitions

- **Scheduling is the selection of times for future controllable events.**
- Ideally, scheduling systems should deal with *all* controllable events, and not just production.
 - That is, they should select times for operations, set-up changes, preventive maintenance, etc.
 - They should at least be *aware* of set-up changes, preventive maintenance, etc. when they select times for operations.
Definitions

- Because of recurring random events, scheduling is an on-going process, and not a one-time calculation.

- Scheduling, or shop floor control, is the bottom of the scheduling/planning hierarchy. It translates plans into events.
This is the general paradigm for control theory and engineering.
Definitions

In a factory,

- **State**: distribution of inventory, repair/failure states of machines, etc.
- **Control**: move a part to a machine and start operation; begin preventive maintenance, etc.
- **Noise**: machine failures, change in demand, etc.
Release and Dispatch

Definitions

• **Release**: Authorizing a job for production, or allowing a raw part onto the factory floor.

• **Dispatch**: Moving a part into a workstation or machine.

• **Release is more important than dispatch**. That is, improving release has more impact than improving dispatch, if both are reasonable.
Scheduling systems or methods should ...

- deliver good factory performance.
- compute decisions quickly, in response to changing conditions.
Performance Goals

- To minimize inventory and backlog.
- To maximize probability that customers are satisfied.
- To maximize predictability (i.e., minimize performance variability).
Performance Goals

- For MTO (Make to Order)
 ★ To meet delivery promises.
 ★ To make delivery promises that are both *soon* and *reliable*.

- For MTS (Make to Stock)
 ★ to have FG (finished goods) available when customers arrive; and
 ★ to have minimal FG inventory.
Objective of Scheduling

Objective is to keep cumulative production close to cumulative demand.
Performance Goals

- Complex factories
- Unpredictable demand (ie D uncertainty)
- Factory unreliability (ie P uncontrollability)
Basic approaches

- Simple rules — *heuristics*
 - **Dangers:**
 - Too simple — may ignore important features.
 - Rule proliferation.

- Detailed calculations
 - **Dangers:**
 - Too complex — impossible to develop intuition.
 - Rigid — had to modify — may have to lie in data.
Basic approaches

- Deterministic optimization.
 - Large linear or mixed integer program.
 - Re-optimize periodically or after important event.

- Scheduling by simulation.
• Nervousness or scheduling volatility (fast but inaccurate response):
 ★ The optimum may be very flat. That is, many very different schedule alternatives may produce similar performance.
 ★ A small change of conditions may therefore cause the optimal schedule to change substantially.
- Original optimum performance was $f(x_1)$.
- New optimum performance is $f'(x_2)$.
- If we did not change x, new performance would be $f'(x_1)$.
- Benefit from change: $f'(x_2) - f'(x_1)$, small.
- Cost of change: $x_2 - x_1$, large.
Basic approaches

- Slow response:
 - Long computation time.
 - Freezing.

- Bad data:
 - Factory data is often very poor, especially when workers are required to collect it manually.
 - GIGO
Heuristics

- A heuristic is a proposed solution to a problem that seems reasonable but cannot be rigorously justified.
- In reentrant systems, heuristics tend to favor older parts.
 ★ This keeps inventory low.
Heuristics

- Good heuristics deliver good performance.
- Heuristics tend to be simple and intuitive.
 - People should be able to understand why choices are made, and anticipate what will happen.
 - Relevant information should be simple and easy to get access to.
 - Simplicity helps the development of simulations.
- Good heuristics are insensitive to small perturbations or errors in data.
Heuristics

- It is often desirable for people to make decisions on the basis of local, current information.
 - Centralized decision-making is most often bureaucratic, slow, and inflexible.
- Most heuristics are naturally decentralized, or can be implemented in a decentralized fashion.
An operation cannot take place unless there is a token available.

Tokens authorize production.

These policies can often be implemented either with finite buffer space, or a finite number of tokens. Mixtures are also possible.

Buffer space could be shelf space, or floor space indicated with paint or tape.
Heuristics

Material/token policies

Performance evaluation

- Tradeoff between service rate and average cycle time.
• Buffers tend to be close to full.
• Sizes of buffers should be related to magnitude of disruptions.
• Not practical for large systems, unless each box represents a set of machines.
Heuristics

Material/token policies

Kanban

- Performance slightly better than finite buffer.
- Sizes of buffers should be related to magnitude of disruptions.
Heuristics

Material/token policies

CONWIP

- *Constant Work in Progress*
- Variation on kanban in which the number of parts in an area is limited.
- When the limit is reached, no new part enters until a part leaves.
- Variations:
 - ★ When there are multiple part types, limit work hours or dollars rather than number of parts.
 - ★ Or establish individual limits for each part type.
Heuristics

Material/token policies

CONWIP

- If token buffer is not empty, attach a token to a part when M_1 starts working on it.
- If token buffer is empty, do not allow part into M_1.
- Token and part travel together until they reach last machine.
- When last machine completes work on a part, the part leaves and the token moves to the token buffer.
Heuristics

- Infinite material buffers.
- Infinite token buffer.
- Limited material population at all times.
- Population limit should be related to magnitude of disruptions.
Claim: $n_1 + n_2 + \ldots + n_5 + b$ is constant.
Heuristics

Material/token policies

CONWIP Proof

• Define \(C = n_1 + n_2 + \ldots + n_5 + b \).

• Whenever \(M_j \) does an operation, \(C \) is unchanged, \(j = 2, \ldots, 5 \).
 * ... because \(n_{j-1} \) goes down by 1 and \(n_j \) goes up by 1, and nothing else changes.

• Whenever \(M_1 \) does an operation, \(C \) is unchanged.
 * ... because \(b \) goes down by 1 and \(n_1 \) goes up by 1, and nothing else changes.
Heuristics

Material/token policies

CONWIP Proof

- Whenever M_6 does an operation, C is unchanged.
 - ... because n_5 goes down by 1 and b goes up by 1, and nothing else changes.

- Similarly for M_1.

- That is, whenever anything happens,
 \[C = n_1 + n_2 + \ldots + n_5 + b \]
 is unchanged.

- C is an invariant.

- C is the maximum population of the material in the system.
Heuristics

Material/token policies

CONWIP/Kanban Hybrid

- Finite buffers
- Finite material population
- Limited material population at all times.
- Population and sizes of buffers should be related to magnitude of disruptions.
Heuristics

Material/token policies

CONWIP/Kanban Hybrid

- Production rate as a function of CONWIP population.
- In these graphs, total buffer space (including for tokens) is finite.
Heuristics

Material/token policies

CONWIP/Kanban Hybrid

- Maximum production rate occurs when population is half of total space.
When total space is infinite, production rate increases only.
Simple Policies

Material/token policies

Hedging point

- **State**: \((x, \alpha)\)
 - \(x = \text{surplus} = \text{difference between cumulative production and demand.}\)
 - \(\alpha = \text{machine state.}\)
 - \(\alpha = 1\) means machine is up; \(\alpha = 0\) means machine is down.
Simple Policies

- Control: \(u \)
- \(u = \) short term production rate.
 - \(\star \) if \(\alpha = 1 \), \(0 \leq u \leq \mu \);
 - \(\star \) if \(\alpha = 0 \), \(u = 0 \).
Simple Policies

Material/token policies

Hedging point

- Objective function:
 \[
 \min E \int_0^T g(x(t)) \, dt
 \]

- where
 \[
 g(x) = \begin{cases}
 g_+ x, & \text{if } x \geq 0 \\
 -g_- x, & \text{if } x < 0
 \end{cases}
 \]
Simple Policies

Material/token policies

Hedging point

Dynamics:
\[\frac{dx}{dt} = u - d \]

\(\alpha \) goes from 0 to 1 according to an exponential distribution with parameter \(r \).

\(\alpha \) goes from 1 to 0 according to an exponential distribution with parameter \(p \).
Simple Policies

Material/token policies

Hedging point

Cumulative Production and Demand

Solution:

- if $x(t) > Z$, wait;
- if $x(t) = Z$, operate at demand rate d;
- if $x(t) < Z$, operate at maximum rate μ.

Copyright ©2002-2016 Stanley B. Gershwin.
The hedging point Z is the single parameter.

It represents a trade-off between costs of inventory and risk of disappointing customers.

It is a function of d, μ, r, p, g_+, g_-.
Simple Policies

Material/token policies

Hedging point

\[Z \]

\[d \]

Copyright ©2002-2016 Stanley B. Gershwin.
Material/token policies

Hedging point

- Operating Machine M according to the hedging point policy is equivalent to operating this assembly system according to a finite buffer policy.
Simple Policies

- D is a demand generator.
 - Whenever a demand arrives, D sends a token to B.
- S is a synchronization machine.
 - S is perfectly reliable and infinitely fast.
- FG is a finite finished goods buffer.
- B is an infinite backlog buffer.
Simple Policies

Material/token policies

• **Base Stock:** the amount of material and backlog between each machine and the customer is limited.
• Deviations from targets are adjusted locally.
Simple Policies

Material/token policies

Basestock

- Infinite buffers.
- Finite initial levels of material and token buffers.
Simple Policies

Material/token policies

Basestock Proof

Claim: \(b_j + n_j + n_{j+1} + \ldots + n_{k-1} - b_k, 1 \geq j \geq k\) remains constant at all times.

Copyright ©2002-2016 Stanley B. Gershwin.
Simple Policies

Material/token policies

Basestock Proof

- Consider $b_1 + n_1 + n_2 + \ldots + n_{k-1} - b_k$
- When M_i does an operation ($1 < i < k$),
 - n_{i-1} goes down by 1, b_i goes down by 1, n_i goes up by 1, and all other b_j and n_j are unchanged.
 - That is, $n_{i-1} + n_i$ is constant, and $b_i + n_i$ is constant.
 - Therefore, $b_1 + n_1 + n_2 + \ldots + n_{k-1} - b_k$ stays constant.
- When M_1 does an operation, $b_1 + n_1$ is constant.
- When M_k does an operation, $n_{i-1} - b_k$ is constant.
- Therefore, when any machine does an operation, $b_1 + n_1 + n_2 + \ldots + n_{k-1} - b_k$ remains constant.
Simple Policies

Material/token policies

Basestock Proof

- Now consider $b_j + n_j + n_{j+1} + \ldots + n_{k-1} - b_k$, $1 < j < k$

- When M_i does an operation, $i \geq j$,
 $b_j + n_j + n_{j+1} + \ldots + n_{k-1} - b_k$ remains constant, from the same reasoning as for $j = 1$.

- When M_i does an operation, $i < j$,
 $b_j + n_j + n_{j+1} + \ldots + n_{k-1} - b_k$ remains constant, because it is unaffected.
Simple Policies

Material/token policies

Baseline Proof

• When a demand arrives,
 \(\star n_j \) stays constant, for all \(j \), and all \(b_j \) increase by one.
 \(\star \) Therefore \(b_j + n_j + n_{j+1} + \ldots + n_{k-1} - b_k \) remains constant for all \(j \).

• Conclusion: whenever any event occurs,
 \(b_j + n_j + n_{j+1} + \ldots + n_{k-1} - b_k \) remains constant, for all \(j \).
Simple Policies

Material/token policies

Comparisons

- Simulation of simple Toyota feeder line.
- We simulated all possible kanban policies and all possible kanban/CONWIP hybrids.
Simple Policies

Material/token policies

Comparisons

- The graph indicates the best of all kanbans and all hybrids.
More results of the comparison experiment: best parameters for service rate = .999.

<table>
<thead>
<tr>
<th>Policy</th>
<th>Buffer sizes</th>
<th>Base stocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite buffer</td>
<td>2 2 4 10</td>
<td>—</td>
</tr>
<tr>
<td>Kanban</td>
<td>2 2 4 9</td>
<td>—</td>
</tr>
<tr>
<td>Basestock</td>
<td>∞ ∞ ∞ ∞</td>
<td>1 1 1 12</td>
</tr>
<tr>
<td>CONWIP</td>
<td>∞ ∞ ∞ ∞</td>
<td>—</td>
</tr>
<tr>
<td>Hybrid</td>
<td>2 3 5 15</td>
<td>—</td>
</tr>
</tbody>
</table>

Copyright ©2002-2016 Stanley B. Gershwin.
More results of the comparison experiment: performance.

<table>
<thead>
<tr>
<th>Policy</th>
<th>Service level</th>
<th>Inventory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite buffer</td>
<td>0.99916 ± .00006</td>
<td>15.82 ± .05</td>
</tr>
<tr>
<td>Kanban</td>
<td>0.99909 ± .00005</td>
<td>15.62 ± .05</td>
</tr>
<tr>
<td>Basestock</td>
<td>0.99918 ± .00006</td>
<td>14.60 ± .02</td>
</tr>
<tr>
<td>CONWIP</td>
<td>0.99922 ± .00005</td>
<td>14.59 ± .02</td>
</tr>
<tr>
<td>Hybrid</td>
<td>0.99907 ± .00007</td>
<td>13.93 ± .03</td>
</tr>
</tbody>
</table>
Simple Policies

- First-In, First Out.
- Simple conceptually, but you have to keep track of arrival times.
- Leaves out much important information:
 - due date, value of part, current surplus/backlog state, etc.
Simple Policies

- Earliest due date.
- Easy to implement.
- Does not consider work remaining on the item, value of the item, etc..
Simple Policies

- **Shortest Remaining Processing Time**

- Whenever there is a choice of parts, load the one with least remaining work before it is finished.

- Variations: include waiting time with the work time. Use expected time if it is random.
Simple Policies

Other policies

Critical ratio

- Widely used, but many variations. One version:
 - Define $CR = \frac{\text{Processing time remaining until completion}}{\text{Due date} - \text{Current time}}$
 - Choose the job with the highest ratio (provided it is positive).
 - If a job is late, the ratio will be negative, or the denominator will be zero, and that job should be given highest priority.
 - If there is more than one late job, schedule the late jobs in SRPT order.
Simple Policies

• This policy considers a part’s due date.
• Define $slack = \text{due date} - \text{remaining work time}$
• When there is a choice, select the part with the least slack.
• Variations involve different ways of estimating remaining time.
Simple Policies

• Simple Policies

Other policies

Drum-Buffer-Rope

• Due to Eli Goldratt.
• Based on the idea that every system has a bottleneck.
• **Drum:** the common production rate that the system operates at, which is the rate of flow of the bottleneck.
• **Buffer:** DBR establishes a CONWIP policy between the entrance of the system and the bottleneck. The buffer is the CONWIP population.
• **Rope:** the limit on the difference in production between different stages in the system.
• But: What if bottleneck is not well-defined?
Conclusions

- Many policies and approaches.
- No simple statement telling which is better.
- Policies are not all well-defined in the literature or in practice.
- My opinion:
 - This is because policies are not derived from first principles.
 - Instead, they are tested and compared.
 - Currently, we have little intuition to guide policy development and choice.