Assembly in the Large: Basic Issues

• Goals of this class
 – put assembly in the large in the context of product development
 – relate it to customer expectations
 – start to think about architecture
FRONT-END PRODUCT DEVELOPMENT PROCESS

1. CUSTOMER NEEDS (DOCUMENT AS PKCs)
 - THE BASIC VALUE PACKAGE
 - FUNCTIONALITY
 - PRICE

2. PRODUCT SPECIFICATIONS
 - PRELIM ARCHITECTURE, KC FLOWDOWN, AND REUSE STRATEGY
 - PRELIM TECHNOLOGY PLAN AND SUPPLIER STRATEGY
 - PRELIM MFR COST EST
 - ID HIGH RISK AREAS

3. CONCEPT GENERATION
 - RANK BY NEED SATISFACTION
 - RANK BY COST AND RISK
 - ASSESS VALUE OF SATISFIED NEEDS AGAINST COST & RISK

4. CONCEPT SELECTION
 - REFINE SPECIFICATIONS
 - WRITE CONTRACT BOOK:
 - SELECTED CONCEPT
 - TARGET SPECS
 - TARGET COST
 - TARGET PROCESSES FOR DESIGN, MFR, IT
 - TARGET SCHEDULE AND RESOURCES
 - ID RISKS AND FALLBACKS OUTSOURCING, SUPPLIERS, AND PARTNERS

AITS & AITL occur here during concept design
A Little History

- Is my product ready for robot assembly?
- Well, is your product ready for assembly at all?
- What are the requirements for assembly?
- Can we explain them to a machine?
- Do we understand the product well enough that our suggestions
 - make sense
 - do not compromise performance
- We may have to reverse engineer it to find out
“Product Character”

• Which of the following products is most like a fire extinguisher?
 – (a) sewing machine
 – (b) hand grenade
 – (c) lawn sprinkler

• What are the issues that go into answering this question?
Two Kinds of Copiers

• Industrial strength and capacity
 – Costs a lot
 – Is finnicky: design is not robust
 – Customer can afford full time service person

• Home or small business
 – Must be low cost
 – Must work
 – Can’t afford service person on site

• The manufacturer did OK with the first but failed with the second
Manual Sewing

Image removed for copyright reasons.
Source:

Machine Sewing - 1

Image removed for copyright reasons.
Source:
The needle pokes through the cloth and leaves a loop.
The bobbin is shown passing through the loop.
In fact, a hook catches the loop and slips it under the bobbin.
When this step is finished, an arm above pulls the loop tight.
<table>
<thead>
<tr>
<th></th>
<th>Manual</th>
<th>Machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of "hands"</td>
<td>Two</td>
<td>One</td>
</tr>
<tr>
<td>Number of threads</td>
<td>One</td>
<td>Two</td>
</tr>
<tr>
<td>Grasp of needle</td>
<td>Repeated grasp/ungrasp</td>
<td>Never ungrasp</td>
</tr>
<tr>
<td>Location of eye</td>
<td>Rear of needle</td>
<td>Tip of needle</td>
</tr>
<tr>
<td>Needle movement</td>
<td>Passes through Flips 180°</td>
<td>Point penetrates Never flips</td>
</tr>
<tr>
<td>Joining method</td>
<td>One thread passes through repeatedly</td>
<td>Two threads interlock but never pass through</td>
</tr>
</tbody>
</table>

Images removed for copyright reasons.

Source:
Comparing 4 Ways to Print

<table>
<thead>
<tr>
<th></th>
<th>Typewriter</th>
<th>Ballhead</th>
<th>Dot Matrix</th>
<th>Inkjet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic actuation method and power source</td>
<td>Manual, complex linkages</td>
<td>Manual input, solenoid actuation, simple linkages</td>
<td>Electro-magnet for each dot maker</td>
<td>Piezo-electric for each color of ink</td>
</tr>
<tr>
<td># DOF</td>
<td>Carriage: 2</td>
<td>Platen: 1</td>
<td>Platen: 1</td>
<td>Platen: 1</td>
</tr>
<tr>
<td></td>
<td>Ribbon: 2</td>
<td>Ribbon: 2</td>
<td>Ribbon: 2</td>
<td>No ribbon</td>
</tr>
<tr>
<td></td>
<td>Keys: 1 each50+ keysmany links/key</td>
<td>Keys: 1 each*50+ keys electrically actuated</td>
<td>No keys</td>
<td>No keys</td>
</tr>
<tr>
<td></td>
<td>Key carrier: 1</td>
<td>Ball carrier: 3</td>
<td>Dot carrier: 1</td>
<td>Jet carrier: 1</td>
</tr>
<tr>
<td># of parts</td>
<td>Many hundreds</td>
<td>Hundreds</td>
<td>25-50</td>
<td>10-20</td>
</tr>
<tr>
<td>Structure</td>
<td>Heavy metal</td>
<td>Heavy metal</td>
<td>Metal and plastic</td>
<td>Almost all plastic</td>
</tr>
<tr>
<td>Shapes printed</td>
<td>Fixed character shapes</td>
<td>Fixed character shapes but different balls have different fonts</td>
<td>Unlimited shapes but low resolution</td>
<td>Unlimited shapes and high resolution</td>
</tr>
<tr>
<td>Colors</td>
<td>Two</td>
<td>Two</td>
<td>Two</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Media</td>
<td>Paper, two or three sheets</td>
<td>Paper, several sheets</td>
<td>Paper, many sheets</td>
<td>Any, but one sheet</td>
</tr>
</tbody>
</table>
Takeaways

• There are many ways to implement a function
• They differ in technology choice, materials, degrees of freedom, allocation of dof, number of parts
• Different implementations have different capabilities for function, customization, upgrade
• They also have different assembly requirements
• Sometimes assembly requirements can drive redesign – IBM ProPrinter example
Steps in AITL - 1

• Understand the business context
 – product character, type of market, customer expectations
 – sales volume anticipated
 – model variety anticipated
 – plans for new versions
 – delayed commitment
 – supplier logistics and make vs buy
 – cost limits
 – labor costs and any regulations
 – cost calculation and ROI methods
 – ROI targets
Steps in AITL - 2

• Understand the factory context
 – labor conditions, training, shift policies
 – space and facility constraints

• Understand the as-is assembly (AITL)
 – study the existing manual process, if any
 • inspecting fiber
 – ignore the existing manual process and focus on
 • technical and economic requirements
 – may give rise to a new level of “DFA” especially if automatic assembly is under consideration
 • sewing, Sony VCR line, RAM with fuses
 – do not ever imply that performance might have to be compromised!
Steps in AITL - 3

- Identify system requirements
 - alternate assembly sequences
 - tentative cycle time
 - production flow and floor layout
 - parts presentation
 - feasible methods and equipment
 - required sensing and communication
 - required displays and controls
 - fixtures and parts carriers
Steps in AITL - 4

- Design a concept assembly system
 - system architecture
 - equipment selection and task assignment
 - cost and economic performance
 - simulation
 - average flow and production rate
 - model changeovers and maintenance (scheduled downtime)
 - failures, repair time (unscheduled downtime)
 - queues, blockage, starvation (unscheduled downtime)
Steps in AITL - 5

• Make final recommendations
 – additional design improvements
 – line design or sequence options
 – remaining risk areas
 – cost estimates
Structure of System Design Issues

<table>
<thead>
<tr>
<th>Product</th>
<th>Global</th>
<th>Local</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Economics and market targets</td>
<td>• Assembly sequences</td>
</tr>
<tr>
<td></td>
<td>• Volume growth</td>
<td>• Types of operations</td>
</tr>
<tr>
<td></td>
<td>• Model varieties</td>
<td>• Geometric constraints</td>
</tr>
<tr>
<td></td>
<td>• Design volatility</td>
<td>• Part size and weight</td>
</tr>
<tr>
<td></td>
<td>• Quality, reliability, safety</td>
<td>• Shape, stiffness</td>
</tr>
<tr>
<td></td>
<td>• Make or buy decisions</td>
<td>• Tolerances and clearances</td>
</tr>
<tr>
<td></td>
<td>• Build to order/stock</td>
<td>• Tests and inspections</td>
</tr>
</tbody>
</table>

Assembly System	Cost and productivity goals	System layout
	• How it interfaces to the factory	• Equipment choice
	• Labor policies	• Task assignment
	• Failure modes and repair policies	• Part feeding and logistics
	• Space needs	