Chapter 8 of Complexity
Reduction of Complexity in Materials through Functional Periodicity
Functional Periodicity related to materials found in Nature

- Periodic Table of chemical elements
 - Crystalline solids
- Atomic structure (electrons in valence bands)
 - Biological systems
Engineered Materials

• Functional Periodicity to prevent unstable crack growth

• *Wire rope*

• *Fabric*

• *Composites*
Crack Growth

• Unstable crack growth

\[k_1 = \sigma_{22\infty} \sqrt{c} \]

Figure removed for copyright reasons.
See Figure 8.1 in [Complexity]:
Crack Growth

- Fatigue crack growth under cyclic loading

\[
\frac{dc}{dN} = A \left(\frac{\Delta k_1}{\sigma_y} \right)^n
\]

Figure removed for copyright reasons. See Figure 8.2 in [Complexity].
Composites

Figure removed for copyright reasons. See Figure 8.3 in [Complexity].
Functional Periodicity for Control of Material Properties

Edge and Screw Dislocations

Figure removed for copyright reasons. See Figure 8.4 in [Complexity].
Functional Periodicity for Control of Material Properties

Stress-Strain Relationship showing work-hardening

Figure removed for copyright reasons. See Figure 8.5 in [Complexity].
Functional Periodicity for Control of Material Properties

Annealing to eliminate dislocations

Figure removed for copyright reasons. See Figure 8.6 in [Complexity].
Functional Periodicity for Control of Material Properties

Wire Drawing

Figure removed for copyright reasons. See Figure 8.7 in [Complexity].
Microcellular Plastics
(Distortion of injection molded parts)
Request of Our Research Sponsor
Eastman Kodak (Gordon Brown)

• Provide a means of reducing the consumption of plastics
 – Maintaining the same toughness of plastics and the same geometric shape
The “customer needs” may be stated in terms of the following FRs and Cs:

Functional Requirements:
FR1 = Reduce consumption of plastics
FR2 = Maintain the toughness of parts

Constraint:
The shape of products must remain the same.
Design of Microcellular Plastics

The highest level FRs

FR1 = Reduce the amount of plastic used
FR2 = Increase the toughness of the plastic product
FR3 = Make three-dimensional geometrical shape
Design of Microcellular Plastics

Conceptual Solution

A large number of microscale bubbles
Design of Microcellular Plastics

The highest level FRs

FR1 = Reduce the amount of plastic used
FR2 = Increase the toughness of the plastic product
FR3 = Make three-dimensional geometrical shape

The corresponding highest level design parameters (DPs) are:

DP1 = Number of cells
DP2 = Cell size
DP3 = Die or mold design
Design of Microcellular Plastics

The design equation for the product:

\[
\begin{align*}
\{ FR1 \} &= \begin{bmatrix} XX0 \\ 0X0 \\ 00X \end{bmatrix} \begin{bmatrix} DP1 \\ DP2 \\ DP3 \end{bmatrix} \\
\{ FR2 \} &= \begin{bmatrix} XX0 \\ 0X0 \\ 00X \end{bmatrix} \begin{bmatrix} DP1 \\ DP2 \\ DP3 \end{bmatrix} \\
\{ FR3 \} &= \begin{bmatrix} XX0 \\ 0X0 \\ 00X \end{bmatrix} \begin{bmatrix} DP1 \\ DP2 \\ DP3 \end{bmatrix}
\end{align*}
\]
What is a Microcellular Plastic?

Microcellular Plastics (MCP) is defined as the plastic that has a large number of small bubbles, typically less than 30 microns.
What is a Microcellular Plastic?

<table>
<thead>
<tr>
<th>Cell Size (µm)</th>
<th>Cell Density (Cells/ cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>10^{15}</td>
</tr>
<tr>
<td>1</td>
<td>10^{12}</td>
</tr>
<tr>
<td>10</td>
<td>10^{9}</td>
</tr>
</tbody>
</table>
Morphology of MuCell

Photo removed for copyright reasons.
Polystyrene Products

Photo removed for copyright reasons.
Photo removed for copyright reasons.
Photo removed for copyright reasons.

PVC profiles
Injection Molded Printer Chassis

Photo removed for copyright reasons.
Injection Molding of Microcellular Plastics vs Solid Plastics

TRW -- Air bag Canister (Material: 33% glass filled Nylon)

<table>
<thead>
<tr>
<th></th>
<th>Solid</th>
<th>MuCell</th>
<th>% red.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part weight</td>
<td>365 gms</td>
<td>252 gms</td>
<td>31%</td>
</tr>
<tr>
<td>Cycle time</td>
<td>45 sec</td>
<td>35 sec</td>
<td>22%</td>
</tr>
<tr>
<td>Tonnage</td>
<td>150 tons</td>
<td>15 tons</td>
<td>90%</td>
</tr>
</tbody>
</table>

(Courtesy of Mar Lee Companies)
Advantages of Microcellular Plastics

- Reduction of material consumption (from 5 to 95 %)
- Faster cycle time
- Higher productivity
- Greater toughness in some plastics
- Dimensional accuracy
- Dimensional stability
- No warping
Advantages of Microcellular Plastics

- Appearance (no visible cells)
- Thin sections
- No sink marks
- Low temperature process
- Low pressure process
- Large number of cavities or smaller machines
- Most polymers
Advantages of Microcellular Plastics

- Use of non-hydrocarbon solvents -- CO$_2$ and N$_2$
- No additives for nucleation
- No reactive components such as viscosity modifiers
- No special equipment other than gas supply system -- similar conventional machines
Question: What is the physical basis for MuCell technology?

Simultaneous nucleation of an extremely large number of cells!!
How do we achieve the simultaneous nucleation of an extremely large number of cells?
Design of the Process Technique for Microcellular Plastics
(The first student to work on the batch process -- Jane Martini, SM Thesis, MIT)

The processing technique consists of dissolving a large amount of gas to form polymer/gas solution and then inducing sudden thermodynamic instability by either lowering the pressure or raising the temperature to change the solubility of the gas.
Sudden Change in Solubility

• The solubility is a function of two thermodynamic properties, temperature and pressure:

\[S = S(p, T) \]

• The change in the solubility can be expressed as:

\[\Delta S = \frac{\partial S}{\partial p} \Delta p + \frac{\partial S}{\partial T} \Delta T \]
Cell sizes of the microcellular foamed polymers (Ambient temperature foaming). Note: Saturation pressure and temperature of CO$_2$ were not the same for all polymers.
Cell density of the microcellular foamed polymers (Ambient temperature foaming). Note: Saturation pressure and temperature of CO₂ were not the same for all polymers.
What is the basic physics behind continuous processes?
Microcellular Plastics
- Design of a Continuous Process

To create a continuous process, we must be able to design a process and associated equipment to perform following four functions:

(1) Rapid dissolution of gas into molten, flowing polymer to form a solution,
(2) Nucleation of a large number of cells,
(3) Control of the cell size, and
(4) Control of the geometry of the final product.
Microcellular Plastics
- Design of a Continuous Process

Extruder

(1) Rapid dissolution of gas into molten, flowing polymer to form a solution,

Die/Mold

(2) Nucleation of a large number of cells,
(3) Control of the cell size, and
(4) Control of the geometry of the final product.
Physics of the Continuous Process

1. Polymer/Gas Solution in Extruders

Important Parameters for Formation of Polymer/Gas Solution:

1. Temperature
2. Pressure
3. Degree of mixing of gas and polymer
i. Gas diffusion and formation of polymer/gas solution

\[t \propto \frac{\ell^2}{\alpha} \]
Brief Introduction to Physics of the Continuous Process

<table>
<thead>
<tr>
<th>Polymer</th>
<th>D of CO$_2$ (cm2/s)</th>
<th>D of N$_2$ (cm2/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At 188 C</td>
<td>At 200 C</td>
</tr>
<tr>
<td>PS</td>
<td>--</td>
<td>1.3x10$^{-5}$</td>
</tr>
<tr>
<td>PP</td>
<td>4.2x10$^{-5}$</td>
<td>--</td>
</tr>
<tr>
<td>PE</td>
<td>--</td>
<td>2.6x10$^{-6}$</td>
</tr>
<tr>
<td>HDPE</td>
<td>5.7x10$^{-5}$</td>
<td>2.4x10$^{-5}$</td>
</tr>
<tr>
<td>LDPE</td>
<td>--</td>
<td>1.1x10$^{-4}$</td>
</tr>
<tr>
<td>PTFE</td>
<td>--</td>
<td>7.0x10$^{-6}$</td>
</tr>
<tr>
<td>PVC</td>
<td>--</td>
<td>3.8x10$^{-5}$</td>
</tr>
</tbody>
</table>

Table 7.2 Estimated diffusion time at various striation thickness and diffusion coefficients. (From Park 1996)
Brief Introduction to Physics of the Continuous Process

Deformation of a spherical bubble in a shear field to form an ellipsoid. The distance between the ellipsoids (measured perpendicular to the major axis of the ellipsoids) is the striation thickness. The dissolution rate of gas increases as the striation thickness becomes smaller and as the interfacial area of gas/polymer increases.
Gas solubility

<table>
<thead>
<tr>
<th>Polymer</th>
<th>CO₂ weight gain (%)</th>
<th>N₂ Weight gain (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>PP</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>PS</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>PMMA</td>
<td>13</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 7.3 Estimated gas solubility in polymers at 200°C and 27.6 MPa (4,000 psi) (Park, 1993).
How high should the pressure be in the extruder or the plasticating section of the injection molding machine?
How high should the pressure be in the extruder or the plasticating section of the injection molding machine?

Pressure should be high enough to prevent the formation of two phase throughout the system until ready for cell nucleation.
Physics of the Continuous Process

2. *Nucleation of Cells*
Physics of the Continuous Process

Classical Nucleation Theory

Free energy change due to the formation of bubbles

\[\Delta G = \Delta G_v + \Delta G_s \]

Critical cluster is formed when

\[\frac{d}{dr} (\Delta G) = 0 \]
Physics of the Continuous Process

Classical Nucleation Theory

(From Sanyal, Ph.D. Thesis, MIT)

Nucleation rate

\[
\frac{dN}{dt} = J = N_0 f \exp \left[-\frac{16}{3kT} \pi \sigma^3 \frac{RT}{P_g A^*} \left(zU(1-2\xi) + kT \ln \left(\frac{\xi}{1-\xi} \right) \right) + RT \ln \frac{P_g}{P} \right]
\]
Nucleation Theory

Nucleation rate:

\[
\frac{dN}{dt} = N_0 \lambda \exp \left(- \frac{\Delta G - \Delta G^* (\text{gas concentration})}{kT} \right)
\]

\(\Delta G = \) Activation energy barrier

\(\Delta G^* = \) Energy change due to supersaturation of gas
Possible Nucleation Sites and ΔG
(Approximately Lowest to Highest)

- Solid/polymer interface (heterogeneous nucl.)
- Non-polar polymer/polar polymer interface
- High strain region
- Free volume
- Crystalline/amorphous interface in a polymer
- Interface between crystallites
- Morphological defects in a polymer
- Polar groups of polymers
Possible Nucleation Sites and ΔG

(Approximately Lowest to Highest)

<table>
<thead>
<tr>
<th>Potential sites</th>
<th>Rough estimation of potential number of nucleation sites (??)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid/polymer interface</td>
<td>10^5 to 10^6 /cc</td>
</tr>
<tr>
<td>Non-polar polymer/polar polymer interface</td>
<td>---</td>
</tr>
<tr>
<td>High strain region</td>
<td>---</td>
</tr>
<tr>
<td>Free volume</td>
<td>10^9 /cc</td>
</tr>
<tr>
<td>Crystalline/amorphous interface in a polymer</td>
<td>10^{12}/cc</td>
</tr>
<tr>
<td>Interface between crystallites</td>
<td>10^{18}/cc</td>
</tr>
<tr>
<td>Morphological defects in a polymer</td>
<td>---</td>
</tr>
<tr>
<td>Polar groups of polymers</td>
<td>10^{22}/cc</td>
</tr>
</tbody>
</table>
Probability Distribution of Activation Energy

![Graph showing the probability density function of the activation energy level, labeled as \(p_{d \#} f \) of \(\Delta G \).]
Effect of Gas on the Probability Density of Activation Energy

Prob. Density

pdf of \((\Delta G - \Delta G^*)\)

Effect of gas on pdf of \(\Delta G\)

pdf of \(\Delta G\)

Energy Level
N_0 as a function of % gas dissolved

- N_0 as a function of % gas dissolved
- $(N_0)_{\text{max}}$
- $(N_0)_{\text{min}}$
- %gas dissolved
How do we achieve the simultaneous nucleation of an extremely large number of cells?

Answer #1:

By creating a large driving force that can easily overcome all activation energy barriers for nucleation.
How do we achieve the simultaneous nucleation of an extremely large number of cells?

Answer #2:

By making sure that the nucleation rate is faster than the diffusion rate.
Nucleation Theory

Condition for Simultaneous Nucleation:

(From Baldwin, Ph.D. Thesis, MIT)

\[
\frac{\alpha}{dN} \frac{dt}{d_c} \ll 1
\]
Nucleation Theory

Condition for Simultaneous Nucleation:

(From Baldwin, Ph.D. Thesis, MIT)

\[
\frac{\text{Characteristic gas diffusion distance}}{\text{Characteristic spacing between stable nuclei}} \ll 1
\]

\[
2 \rho_c^{1/3} (\alpha t_D)^{1/2} \ll 1
\]
How do we achieve the simultaneous nucleation of an extremely large number of cells?

Answers:

1. By creating a large driving force

2. By making sure that the nucleation rate is faster than the diffusion rate.
How can we make the nucleation time as short as possible and the driving force as large as possible?
How can we make the nucleation time as short as possible and make the driving force as large as possible?

1. Make $(-\frac{dp}{dt})$ large
Why do we need to make $(-dp/dt)$ large?
How large should dp/dt be?
How large should \(\frac{dp}{dt} \) be?

Answer

It depends on the following:

(1) the temperature of the plastic
(2) materials
(3) die or mold design
How large should dp/dt be?

<table>
<thead>
<tr>
<th>Polymer</th>
<th>D of CO$_2$ (cm2/s)</th>
<th>D of N$_2$ (cm2/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>@ 188</td>
<td>@ 200 C</td>
</tr>
<tr>
<td>PS</td>
<td>--</td>
<td>1.3x10$^{-5}$</td>
</tr>
<tr>
<td>PE</td>
<td>--</td>
<td>2.6x10$^{-6}$</td>
</tr>
<tr>
<td>HDPE</td>
<td>5.7x10$^{-5}$</td>
<td>2.4x10$^{-5}$</td>
</tr>
<tr>
<td>LDPE</td>
<td>--</td>
<td>1.1x10$^{-4}$</td>
</tr>
<tr>
<td>PTFE</td>
<td>--</td>
<td>7.0x10$^{-6}$</td>
</tr>
<tr>
<td>PVC</td>
<td>--</td>
<td>3.8x10$^{-5}$</td>
</tr>
<tr>
<td>PP</td>
<td>4.2x10$^{-5}$</td>
<td>--</td>
</tr>
</tbody>
</table>

How large should \((-\frac{dp}{dt})\) be?

Typical value:

\[|\frac{dp}{dt}| > 1 \text{ G Pascal / second}\]
How can we make the nucleation cite (N_0) as large as possible?

1. Increase the level of supersaturation!!
2. Don’t put nucleating agent!!
3. Introduce internal strains by stretching, etc.
Cell Density vs % Gas Dissolved

Cell Density

Concentration of Dissolved Gas
CELL NUCLEATION DENSITY
Polystyrene as a function of N_2 Sat Pressure
(from Kumar, Ph.D. Thesis, MIT)
CELL NUCLEATION DENSITY
Polycarbonate as a function of N₂ Sat. Pressure
(From V. Kumar, 2000)
Physics of the Continuous Process

3. Cell Growth
Physics of the Process

Cell Growth in a Batch or Continuous Process (From Baldwin, Ph.D. Thesis, MIT)

Governing Relationships

\[
\rho \left[\frac{3}{2} \left(\frac{dR_{cell}}{dt} \right)^2 + R_{cell} \frac{d^2 R_{cell}}{dt^2} \right] = -4 \frac{\mu}{R_{cell}} \frac{dR_{cell}}{dt} + \left(P_g - P_\infty - \frac{2\sigma}{R_{cell}} \right)
\]

\[
\frac{\partial}{\partial t} \left(P_g \frac{R_{cell}^3}{RT} \right) = 3 \rho_p D r^2 \frac{\partial c}{\partial r} \bigg|_{R_{cell}}
\]

\[
\frac{\partial c}{\partial t} + \frac{R_{cell}^2}{r^2} \frac{dR_{cell}}{dt} \frac{\partial c}{\partial r} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 D \frac{\partial c}{\partial r} \right)
\]
Physics of the Process

Cell Growth in a Batch or Continuous Process

Initial condition

$c(r, 0) = c_i$

Boundary conditions

$c(R_{cell}, t) = K_s P$

$\left(\frac{\partial c}{\partial t} \right)_{t, r \rightarrow \infty} = 0$
Cell Growth in a Batch or Continuous Process

Physics of the Process

Cell Size Control in Free Expansion

Forces due to the pressure in the bubble

\[f(p, T_{\text{gas}}, r) \]

Viscous forces resisting the expansion

\[g(T_{\text{exterior layer}}, \frac{\partial T}{\partial r_{\text{exterior layer}}}, \eta) \]

\[= 1 \]
Physics of the Process
Cell Growth in a Batch or Continuous Process

Cell Size Control by Imposition of Geometric Constraint

Free expansion of bubbles
Geometric constraints

\[\sum_{i=1}^{n} \Delta v_i = 1 \]
\[g(\text{Geometry}) = 1 \]
Physics of the Process

For Uniform Cell Growth in an Intermittent Processes

\[
\frac{\text{Characteristic flow rate in the mold}}{\text{Rate of expansion of cells}} > 1
\]

\[
f(V_{\text{injection}}) > 1
\]

\[
g(\eta, T_{\text{polymer}}, c_{\text{total gas}}, \alpha_{\text{gas in polymer}}) > 1
\]
Design of a Continuous Process

• FRs --> DPs

• DPs --> PVs
Design of a Continuous Process for Sheet Extrusion

The highest level FRs

FR1 = Control cell size
FR2 = Control the number of cells
FR3 = Control the geometry of the extrudate
Design of Microcellular Plastics Process

The corresponding design parameters (DPs) are:

- **DP1** = \(P_i^{*} \)
- **DP2** = \(\frac{dp}{dt} \)
- **DP3** = Die shape & Accessories

* Assuming that \(P_i^{*} \) is the saturation pressure for the dissolved gas.
Design of Microcellular Plastics

The design equation may be written as

\[
\begin{bmatrix}
\text{Cell size} \\
\text{Cell density} \\
\text{Geometry}
\end{bmatrix}
=
\begin{bmatrix}
X & x & 0 \\
X & X & 0 \\
x & 0 & X
\end{bmatrix}
\begin{bmatrix}
P_i \\
dp/dt \\
\text{Die & Acc.}
\end{bmatrix}
\]
Design of Microcellular Plastics Process

FR3 and DP3 must be decomposed to develop detailed means of controlling the geometry.
Design of Microcellular Plastics

The corresponding Process Variables (PVs) are:

PV1 = Extruder rpm, Ω
PV2 = Die length, L
PV3 = Means of controlling the geometry of the extrudate
Design of Microcellular Plastics

The corresponding design equation for the process:

\[
\begin{bmatrix}
P_i \\
\frac{dp}{dt} \\
Die \ & Acc.
\end{bmatrix}
= \begin{bmatrix}
XX \ 0 \\
0 \ X
\end{bmatrix}
\begin{bmatrix}
\Omega \\
L \\
Means \ ...
\end{bmatrix}
\]
Typical Nucleation Rate in a Parallel Die

Schematic Diagram Adapted from Sanyal, PhD. Thesis, MIT

Nucleation Rate

X/L

0.5

1
Typical Cell Growth in a Parallel Die

Schematic Diagram Adapted from Sanyal, PhD. Thesis, MIT

Cell Radius

X/L

0.5

1
Design of a continuous Process

Graph removed for copyright reasons.

Representative pressure profile along the polymer flow field in the extruder and die (From Baldwin, Park and Suh, 1997)
Design of a continuous Process

Figure 7.16 Schematic of the Microcellular extrusion system used for the shaping and cell growth control experiments (From Baldwin, Park and Suh, 1997)
Unanticipated Processing Advantages of Microcellular Plastics

- Decrease in viscosity
- Lowering of the melting point and glass transition temperature
- Elimination of shrinkage
Effect of CO$_2$ on Physical Properties: Viscosity
Rigid PVC @ 340F

- Viscosity (Ns/m²)

- Shear Rate (1/s)

Graph showing the relationship between shear rate and viscosity for rigid PVC at 340F, with conditions of 'No gas' and '0.5% CO2'.
ABS @ 370F

Shear Rate (1/s) vs. Viscosity (Ns/m²)

- No gas
- 3% CO₂
- 8% CO₂
- 12% CO₂
Glass Transition Temperature

DMA result (PETG) [From Cha & Yoon, 2001]

Behavior of PETG material as a function of temperature. Elastic modulus sharply decreases around the glass transition temperature.
Models for estimating T_g [From Cha & Yoon, 2001]

Chow’s Model (1980)

$$\ln\left(\frac{T_g}{T_{go}}\right) = \beta \{(1 - \theta) \ln(1 - \theta) + \theta \ln \theta\}$$

Cha-Yoon Model (1998)

$$T_g = T_{go} \exp\left[-\left(M_p\right)^{-1/3} (\rho)^{-1/4} \alpha \omega\right]$$

ρ : specific density of polymer
α : material constant
ω : % solubility for carbon dioxide in polymer (weight gain)
Glass Transition Temperature
[From Cha & Yoon, 2001]

• Comparison of the Two Models

Two graphs removed for copyright reasons.

Experimental results of T_g of PETG
Comparison of Cha-Yoon model vs. Chow’s model
Microcellular Foaming/Forming

- Thermoforming: the process of manufacturing products from a thermoplastic sheet heated to its softening point and formed by pressure difference into a molded shape

Figure removed for copyright reasons.
Experimental

- Cha-Yoon model indicates when the weight fraction of CO2 dissolved in PETG is 7.7% the T_g is lowered to room temperature

Photographs of two cups made through microcellular foaming/forming experiment at room temperature

Photo removed for copyright reasons.
Effect of Dissolved Gas on Processing of Microcellular Plastics

- *Higher throughput rate by as much as 50%*
- *Faster cycle time by as much as x2*
- *Precision parts*
Cycle Time Reduction

- **Solid**
 - Start of Injection
 - Hold
 - Cooling
 - 20% - 50% overall cycle savings
 - 25% less cooling time
 - Hold & Pack is eliminated

- **McCell**
 - Hold
 - Cooling

Overall cycle time reduction due to MuCell technology.
MuCell™ Molding Technology

Office Equipment

Dimensional Stability Required:

• Glass filled engineering resins such as PPO, PC or PC/ABS
• Out of spec product made to spec. using MuCell Molding Technology
• 50% reduction in warpage - .060 to .027
• 25% reduction in cycle time, 8% weight reduction

Photo removed for copyright reasons.

Printer Chassis
MuCell™ Molding Technology
Impact Performance

Printer Chassis:

- 35% Glass/Mineral filled PPO/HIPS
- 8% weight reduction

Drop Weight Impact

<table>
<thead>
<tr>
<th></th>
<th>Solid</th>
<th>6.7 ft-lb</th>
<th>7.3 kJ/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>8% Wt. Red.</td>
<td>9.0 ft-lb</td>
<td>9.7 kJ/m²</td>
<td></td>
</tr>
</tbody>
</table>