Discount Rates

\[PV(B_n) = B_n \cdot \frac{1}{(1+r)^n} \]

What is correct discount rate \((r)\) to use to evaluate investment decisions?
- individual
- corporation
- government (society)

Considerations
1) inflation, real vs. nominal $
 \(= \Delta \) in prices
 Q: which prices? \(
ightarrow\) different ways of measuring of inflation
 consumer price index
 producer price index
 \(\rightarrow \) be consistent, use real $ when possible
2) cost of capital
 a. risk free – U.S. government bonds
 b. risk premium
 c. uncertainty in projections \(r_{RP} \)
 \(r = r_{RF} + r_{RP} \)
 - \(r_{RF} \) is same for government, private
 - \(r_{RP} \) is greater for private because government can be source of risk
 represents uncertainty about future projections

Private discount rate > Social discount rate
\(\rightarrow \) faster exploitation of natural resources

Net Present Value
\[\text{Net Present Value} = \sum_{i=1}^{n} \frac{B_i - C_i}{(1+r)^i} \]

Payback (period) – how long until $ back?
not a real measure of profitability

IRR
- discount rate that results in present value = 0
- example: $3000 inv. yields $1000/year...
- timing of flows \(\sqrt{\} \)
- assumes all cash can be invested at same rate?

NPV
- choose discount rate (“cut-off rate”)
Role of **financing** ("other people's money" or OPM, "leverage")
- compare projects with equal (or no) leverage

<table>
<thead>
<tr>
<th>Example</th>
<th>@ 10% discount rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>$100m now</td>
<td>-100.0</td>
</tr>
<tr>
<td>2: (next yr) $50m payment</td>
<td>+45.5</td>
</tr>
<tr>
<td>3: $100m -> yard</td>
<td>-82.6</td>
</tr>
<tr>
<td>4: $200m payment</td>
<td>+150.0</td>
</tr>
<tr>
<td></td>
<td>+12.9 @ 10%</td>
</tr>
</tbody>
</table>