1. Let a be a positive real number, and let the sequence of real numbers x_i be given by

\[x_0 = 1, \quad x_{i+1} = \frac{1}{2} \left(x_i + \frac{a}{x_i} \right), \]

for $i = 0, 1, 2, 3, \ldots$

The value x_i will converge to \sqrt{a} as $i \to \infty$ Write a program that reads in the value of a interactively and uses this algorithm to compute the square root of a.

Test your program as you vary the maximum number of iterations of the algorithm is increased from 1, 2, 3, … and determine how many significant digits of precision that you obtain for each. How many iterations are necessary to reach the machine precision of matlab?

2. Write a program to evaluate e by the series:

\[e = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + \ldots \]

Test your program as you increase the number of terms in the series. Determine how many significant digits of precision that you obtain in your answer as a function of the number of terms in the series. How many terms are necessary to reach machine precision?

3. Consider the function $x \sin(x) - 1$.

(a.) How many roots does this function have in the interval $[0, \pi]$?

(b.) Write a matlab program to find the root(s) using Newton-Raphson iteration with appropriate starting values.

(c.) Make a graph of relative error vs. iteration step for all roots.

(d.) How many iterations are needed to reach an error of less than 10^{-8}?