1. Give an example where Q-learning is implemented with greedy policies (i.e., \(u_t = \min_a Q_t(x_t, a) \)) and fails to converge. How can it be modified so that convergence is ensured?

2. Suppose operator \(T \) is a contraction with respect to \(\| \cdot \|_2 \). Does Gauss-Seidel value iteration converge?

3. Suppose operator \(F \) satisfies \(\|FJ - F\tilde{J}\|_2 \leq \|J - \tilde{J}\|_2 \) for all \(J, \tilde{J} \) and there is a unique \(J^* \) such that \(J^* = FJ^* \).

 (a) Let \(G_\gamma J = (1 - \gamma)J + \gamma FJ \). Show that there is \(\gamma \in (0,1) \) such that \(\|G_\gamma J - J^*\|_2 < \|J - J^*\|_2 \).

 (b) Consider \(\dot{J}_t = FJ_t - J_t \). Show that \(J_t \) converges to \(J^* \).

4. (bonus) Suppose operator \(F \) satisfies \(\|FJ - F\tilde{J}\|_\infty \leq \|J - \tilde{J}\|_\infty \) for all \(J, \tilde{J} \) and there is a unique \(J^* \) such that \(J^* = FJ^* \). Consider \(\dot{J}_t = FJ_t - J_t \). Show that \(J_t \) converges to \(J^* \).