1 Value Iteration

Using value iteration, starting at an arbitrary J_0, we generate a sequence of $\{J_k\}$ by

$$J_{k+1} = TJ_k, \forall \text{integer } k \geq 0.$$

We have shown that the sequence $J_k \to J^*$ as $k \to \infty$, and derived the error bounds

$$||J_k - J^*||\infty \leq \alpha^k||J_0 - J^*||\infty$$

Recall that the greedy policy u_J with respect to value J is defined as $TJ = Tu_J$. We also denote $u_k = u_{J_k}$ as the greedy policy with respect to value J_k. Then, we have the following lemma.

Lemma 1 Given $\alpha \in (0,1)$,

$$||J_{u_k} - J_k||\infty \leq \frac{1}{1-\alpha}||TJ_k - J_k||\infty$$

Proof:

$$J_{u_k} - J_k = (I - \alpha P_{u_k})^{-1}g_{u_k} - J_k$$

$$= (I - \alpha P_{u_k})^{-1}(g_{u_k} + \alpha P_{u_k}J_k - J_k)$$

$$= (I - \alpha P_{u_k})^{-1}(TJ_k - J_k)$$

$$= \sum_{t=0}^{\infty} \alpha^t P_{u_k}^t (TJ_k - J_k)$$

$$\leq \sum_{t=0}^{\infty} \alpha^t P_{u_k}^t e||TJ_k - J_k||\infty$$

$$= \sum_{t=0}^{\infty} \alpha^t e||TJ_k - J_k||\infty$$

$$= \frac{e}{1-\alpha}||TJ_k - J_k||\infty$$

where I is an identity matrix, and e is a vector of unit elements with appropriate dimension. The third equality comes from $TJ_k = g_{u_k} + \alpha P_{u_k}J_k$, i.e., u_k is the greedy policy w.r.t. J_k, and the forth equality holds because $(I - \alpha P_{u_k})^{-1} = \sum_{t=0}^{\infty} \alpha^t P_{u_k}^t$. By switching J_{u_k} and J_k, we can obtain $J_k - J_{u_k} \leq \frac{e}{1-\alpha}||TJ_k - J_k||\infty$, and hence conclude

$$|J_{u_k} - J_k| \leq \frac{e}{1-\alpha}|TJ_k - J_K|$$

or, equivalently,

$$||J_{u_k} - J_k||\infty \leq \frac{1}{1-\alpha}||TJ_k - J_k||\infty.$$
Theorem 1

$$||J_{u_k} - J^*||_\infty \leq \frac{2}{1 - \alpha}||J_k - J^*||_\infty$$

Proof:

$$||J_{u_k} - J^*||_\infty = ||J_{u_k} - J_k + J_k - J^*||_\infty$$

$$\leq ||J_{u_k} - J_k||_\infty + ||J_k - J^*||_\infty$$

$$\leq \frac{1}{1 - \alpha}||TJ_k - J^* + J^* - J_k||_\infty + ||J_k - J^*||_\infty$$

$$\leq \frac{1}{1 - \alpha}(||TJ_k - J^*||_\infty + ||J^* - J_k||_\infty) + ||J_k - J^*||_\infty$$

$$\leq \frac{2}{1 - \alpha}||J_k - J^*||_\infty$$

The second inequality comes from Lemma 1 and the third inequality holds by the contraction principle. □

2 Optimality of Stationary Policy

Before proving the main theorem of this section, we introduce the following useful lemma.

Lemma 2 If $J \leq TJ$, then $J \leq J^*$. If $J \geq TJ$, then $J \geq J^*$.

Proof: Suppose that $J \leq TJ$. Applying operator T on both sides repeatedly $k - 1$ times and by the monotonicity property of T, we have

$$J \leq TJ \leq T^2J \leq \cdots \leq T^kJ.$$

For sufficiently large k, T^kJ approaches to J^*. We hence conclude $J \leq J^*$. The other statement follows the same argument. □

We show the optimality of the stationary policy by the following theorem.

Theorem 2 Let $u = (u_1, u_2, \ldots)$ be any policy and let $u^* \equiv u_{J^*}$. Then,

$$J_u \geq J_{u^*} = J^*.$$

Moreover, let u be any stationary policy such that $T_u J^* \neq T J^*$.\(^2\) Then, $J_u(x) > J^*(x)$ for at least one state $x \in S$.

Proof: Since g and J are finite, there exists a real number M satisfying $||g_u||_\infty \leq M$ and $||J^*||_\infty \leq M$. Define

$$J^k_u = T_{u_1} T_{u_2} \cdots T_{u_k} J^*.$$

\(^1\)That is, $J^* = TJ^* = T_{u^*} J^*$.

\(^2\)That is to say that u is not a greedy policy w.r.t. J^*.

2
Then
\[\|J^k_u - J_u\|_\infty \leq M(1 + \frac{1}{1-\alpha})\alpha^k \rightarrow 0 \text{ as } k \rightarrow \infty. \]

If \(u = (u^*, u^*, \ldots) \), then
\[\|J_{u^*} - J_u^k\|_\infty \rightarrow 0 \text{ as } k \rightarrow \infty. \]

Thus, we have \(J^k_{u^*} J = T_{u^*}^k J^* = T_{u^*}^{k-1} (TJ^*) = T_{u^*}^{k-1} J^* = J^* \). Therefore \(J_{u^*} = J^* \). For any other policy, for all \(k \),
\[
J_u \geq J^k_u - M \left(1 + \frac{1}{1-\alpha} \right) \alpha^k \\
= T_{u_1} \ldots T_{u_k} J^* - M \left(1 + \frac{1}{1-\alpha} \right) \alpha^k \\
\geq T_{u_1} \ldots T_{u_{k-1}} J^* - M \left(1 + \frac{1}{1-\alpha} \right) \alpha^k \\
\geq \ldots \geq J^* - M \left(1 + \frac{1}{1-\alpha} \right) \alpha^k
\]

Therefore \(J_u \geq J^* \). Take a stationary policy \(u \) such that \(T_u J^* \neq TJ^* \), i.e. \(T_u J^* \geq TJ^* \), and \(\exists \) at least one state \(x \in S \) such that \((T_u J^*)(x) > (TJ^*)(x)\). Observe
\[J^* = TJ^* \leq T_u J^* \]

Applying \(T_u \) on both sides and by the monotonicity property of \(T \), or applying Lemma 2,
\[J^* \leq T_u J^* \leq T_u^2 J^* \leq \ldots \leq T_u^k J^* \rightarrow J_u \]
and \(J^*(x) < J_u(x) \) for at least one state \(x \).

\[\square \]

3 Policy Iteration

The policy iteration algorithm proceeds as follows.

1. Start with policy \(u_0 \), \(k=0 \);
2. Evaluate \(J_{u_k} = g_{u_k} + \alpha P_{u_k} J_{u_k} \);
3. Let \(u_{k+1} = u_{J_{u_k}} \);
4. If \(u_{k+1} = u_k \) stop; otherwise, go back to Step 2.

Note that Step 2 aims at getting a better policy for each iteration. Since the set of policies is finite, the algorithm will terminate in finite steps. We state this concept formally by the following theorem.

Theorem 3 Policy iteration converges to \(u^* \) after a finite number of iterations.
Proof: If u_k is optimal, then we are done. Now suppose that u_k is not optimal. Then

$$TJ_{u_k} \leq T_{u_k}J_{u_k} = J_{u_k}$$

with strict inequality for at least one state x. Since $T_{u_{k+1}}J_{u_k} = TJ_{u_k}$ and $J_{u_k} = T_{u_k}J_{u_k}$, we have

$$J_{u_k} = T_{u_k}J_{u_k} \geq TJ_{u_k} = T_{u_{k+1}}J_{u_k} \geq T_{u_{k+1}}^n J_{u_k} \rightarrow J_{u_{k+1}}$$
as $n \rightarrow \infty$.

Therefore, policy u_{k+1} is an improvement over policy u_k. \qed

In step 2, we solve $J_{u_k} = g_{u_k} + \alpha P_{u_k} J_{u_k}$, which would require a significant amount of computations. We thus introduce another algorithm which has fewer iterations in step 2.

3.1 Asynchronous Policy Iteration

The algorithm goes as follows.

1. Start with policy u_0, cost-to-go J_0, $k = 0$

2. For some subset $S_k \subseteq S$, do one of the following

 (i) value update \quad $(J_{k+1})(x) = (T_{u_k}J_k)(x), \forall x \in S_k$,

 (ii) policy update \quad $u_{k+1}(x) = u_{J_k}(x), \forall x \in S_k$

3. $k = k + 1$; go back to step 2

Theorem 4 If $T_{u_0}J_0 \leq J_0$ and infinitely many value and policy updates are performed on each state, then

$$\lim_{k \to \infty} J_k = J^*.$$

Proof: We prove this theorem by two steps. First, we will show that

$$J^* \leq J_{k+1} \leq J_k, \quad \forall k.$$

This implies that J_k is a nonincreasing sequence. Since J_k is lower bounded by J^*, J_k will converge to some value, i.e., $J_k \downarrow J$ as $k \to \infty$. Next, we will show that J_k will converge to J^*, i.e., $J = J^*$.

Lemma 3 If $T_{u_0}J_0 \leq J_0$, the sequence J_k generated by asynchronous policy iteration converges.

Proof: We start by showing that, if $T_{u_k}J_k \leq J_k$, then $T_{u_{k+1}}J_{k+1} \leq J_{k+1} \leq J_k$. Suppose we have a value update. Then,

$$\forall x \in S_k, \quad J_{k+1}(x) = (T_{u_k}J_k)(x) \leq J_k(x)$$

$$\forall x \notin S_k, \quad J_{k+1}(x) = J_k(x)$$

Thus,

$$(T_{u_{k+1}}J_{k+1})(x) = (T_{u_k}J_{k+1})(x) \leq (T_{u_k}J_k)(x)$$

Thus,

$$\forall x \in S_k, \quad J_{k+1}(x) = J_k(x)$$

$$\forall x \notin S_k, \quad J_{k+1}(x) = J_k(x)$$
Now suppose that we have a policy update. Then $J_{k+1} = J_k$. Moreover, for $x \in S_k$, we have

$$(T_{u_{k+1}} J_{k+1})(x) = (T_{u_{k+1}} J_k)(x)$$

$$= (T J_k)(x)$$

$$\leq (T u_k J_k)(x)$$

$$\leq J_k(x)$$

$$= J_{k+1}(x).$$

The first equality follows from $J_k = J_{k+1}$, the second equality and first inequality follows from the fact that $u_{k+1}(x)$ is greedy with respect to J_k for $x \in S_k$, the second inequality follows from the induction hypothesis, and the third equality follows from $J_k = J_{k+1}$. For $x \notin S_k$, we have

$$(T_{u_{k+1}} J_{k+1})(x) = (T_{u_k} J_k)(x)$$

$$\leq J_k(x)$$

$$= J_{k+1}(x).$$

The equalities follow from $J_k = J_{k+1}$ and $u_{k+1}(x) = u_k(x)$ for $x \notin S_k$, and the inequality follows from the induction hypothesis.

Since by hypothesis $T_{u_0} J_0 \leq J_0$, we conclude that J_k is a decreasing sequence. Moreover, we have $T_{u_k} J_k \leq J_k$, hence $J_k \geq J_{u_k} \geq J^*$, so that J_k is bounded below. It follows that J_k converges to some limit \bar{J}.

\[\square\]

Lemma 4 Suppose that $J_k \notin \bar{J}$, where J_k is generated by asynchronous policy iteration, and suppose that there are infinitely many value and policy updates at each state. Then $\bar{J} = J^*$.

Proof: First note that, since $T J_k \leq J_k$, by continuity of the operator T, we must have $T \bar{J} \leq \bar{J}$. Now suppose that $(T \bar{J})(x) < \bar{J}(x)$ for some state x. Then, by continuity, there is an iteration index \tilde{k} such that $(T J_k)(x) < \bar{J}(x)$ for all $k \geq \tilde{k}$. Let $k'' > k' > \tilde{k}$ correspond to iterations of the asynchronous policy iteration algorithm such that there is a policy update at state x at iteration k', a value update at state x at iteration k'', and no updates at state x in iterations $k' < k < k''$. Such iterations are guaranteed to exist since there are infinitely many value and policy update iterations at each state. Then we have $u_{k''}(x) = u_{k'+1}(x)$, $J_{k''}(x) = J_{k'}(x)$, and

$$J_{k''+1}(x) = (T_{u_{k''}} J_{k''})(x)$$

$$= (T_{u_{k'+1}} J_{k'})(x)$$

$$\leq (T_{u_{k'+1}} J_{k'})(x)$$

$$= (T J_{k'})(x)$$

$$< \bar{J}.$$

The first equality holds because there is a value update at state x at iteration k'', the second equality holds because $u_{k''}(x) = u_{k'+1}(x)$, the first inequality holds because J_k is decreasing and $T_{u_{k'+1}}$ is monotone and the third equality holds because there is a policy update at state x at iteration k'.

We have concluded that $J_{k+1} < \bar{J}$. However by hypothesis $J_k \downarrow \bar{J}$, we have a contradiction, and it must follow that $T\bar{J} = \bar{J}$, so that $\bar{J} = \bar{J}^*$. \square