Review of Last Lecture

- Seebeck effect
- Peltier effect
- Thomson effect
- Device analysis
- Figure of merit ZT
- Applications
Thermoelectric Figure of Merit

\[ZT = \frac{\sigma S^2 T}{k} = \frac{\sigma S^2 T}{k_p + k_e} \]

- \(\sigma \): Electrical Conductivity
- \(S \): Seebeck Coefficient
- \(T \): Temperature
- \(k \): Thermal Conductivity
- \(k_p \): Phonon Contribution
- \(k_e \): Electron Contribution
Microscopic Formulation of Thermoelectric Properties

- Review of basic concepts in solid states
- Simple kinetic formulation
- Results from formal transport theory
Atomic Vibration

- Classical Oscillator
 - Natural Frequency
 \[v = \frac{1}{2\pi} \sqrt{\frac{K}{M}} \]
 - From Quantum Mechanics
 - Energy of Mode
 \[E = \left(n + \frac{1}{2} \right) h \nu \quad n = 0, 1, 2, \ldots \]
 - Basic vibrational energy quanta \(h \nu \) is called a phonon

Potential Energy

\[U \approx U_o + K(x - x_o)^2 \]

\[F = -\frac{dU}{dx} = -K(x - x_o) \]
1D Atomic Chair

Monatomic

![Diagram of a monatomic 1D atomic chain]

Allowable wavelength: \(Na = \frac{\lambda}{2}, 2 \frac{\lambda}{2}, \ldots \)

Standing Wave Picture

\[
k = \frac{2\pi}{\lambda} = \frac{2\pi}{2Na}, \ldots, \frac{(N-1)a\pi}{2Na}, \frac{\pi}{2a}, \ldots
\]

Diatomic

![Diagram of a diatomic 1D atomic chain]

Optical Phonons

Acoustic Phonons

\[
k = \frac{2\pi}{\lambda} = -\frac{\pi}{a}, -\frac{(N-1)a\pi}{Na}, \ldots, \frac{(N-1)a\pi}{Na}, \frac{\pi}{a}
\]
Unit Cell in Real and Reciprocal Spaces

• Periodic signal in time with period T, Fourier transform gives a frequency $\nu = 2\pi / T$,
• Periodic signal in space with wavelength λ, Fourier transform gives $2\pi / \lambda$.

Crystal unit cell in real space

Fourier Transform

Reciprocal Space
Phonons Dispersion in Crystals

Image removed due to copyright restrictions.
Please see Fig. 1a and 2a in Giannozzi, Paolo, et al. "Ab initio Calculation of Phonon Dispersions in Semiconductors." Physical Review B 43 (March 1991): 7231-7242.
Electronic Energy Levels

- Wavefunction
 \[\Psi_{n\ell m_s}(r, \theta, \varphi) \]
 \[n = 1, 2, 3, \ldots \]
 \[\ell < n \]
 \[|m| \leq \ell \]
 \[s = \pm \frac{1}{2} \]

- Degeneracy
 \[D = 2n^2 \]

Hydrogen Atom

- 1s, n=1 (-13.6 eV)
- 2s, 2p, n=2 (-3.4 eV)
- 3s, 3p, 3d, n=3 (-1.5 eV)
Electrons in an Atomic Chain

\[\Psi_{ns}(k, x) \]

\[k = \frac{2\pi}{\lambda} = -\frac{\pi}{a}, -\frac{(N-1)a\pi}{Na}, \ldots, \frac{(N-1)a\pi}{Na}, \frac{\pi}{a} \]

\(k \) has N discrete values between \((-\frac{N}{2}, \frac{N}{2})\)
Different Solids

Energy vs. \(k/(\pi/a) \)

- **Metal**
- **Insulator**
- **n-type Semiconductor**
- **p-type Semiconductor**

- **Fermi Level**
- **Gap \(E_g \)**
- **Conduction Band**
- **Valence Band**
- **Donor Energy Level**
- **Acceptor Energy Level**
Electronic Band Structures of Real Crystals

\[\text{Si} \]

\[\text{GaAs} \]

Indirect Band Gap \(E_g = 1.12 \text{ eV} \)

Direct Band Gap \(E_g = 1.42 \text{ eV} \)
Parabolic Band Approximation

- **Free Electrons**

\[E = \frac{mv^2}{2} = \frac{p^2}{2m} = \frac{\hbar k^2}{2m} \]

- **Near Minimum (Maximum)**

\[E - E_c = \frac{\hbar^2}{2} \left(\frac{k_x^2}{m_{11}} + \frac{k_y^2}{m_{22}} + \frac{k_z^2}{m_{33}} \right) \]

Effective mass

\[m_{ij} = \frac{\hbar^2}{\left(\partial^2 E / \partial k_i \partial k_j \right)} \]
Constant Energy Surface
Statistical Distributions

Average Number of Particles in a Quantum State

Fermi-Dirac

\[f = \frac{1}{\exp \left(\frac{E - \mu}{k_B T} \right) + 1} \]

Bose-Einstein

\[f = \frac{1}{\exp \left(\frac{E - \mu}{k_B T} \right) - 1} \]
Electron Density

\[E - E_c = \frac{\hbar^2 \left(k_x^2 + k_y^2 + k_z^2 \right)}{2m} \]

\[N = 2 \sum_{-N_x/2}^{N_x/2} \sum_{-N_y/2}^{N_y/2} \sum_{-N_z/2}^{N_z/2} f(E, T) \]

\[= 2 \int_{-\pi/a}^{\pi/a} \frac{dk_x}{(2\pi/L_x)} \int_{-\pi/a}^{\pi/a} \frac{dk_y}{(2\pi/L_y)} \int_{-\pi/a}^{\pi/a} \frac{dk_z}{(2\pi/L_z)} f(E, T) \]

\[= \frac{2V}{8\pi^3} \int_{-\pi/a}^{\pi/a} \int_{-\pi/a}^{\pi/a} \int_{-\pi/a}^{\pi/a} dk_x dk_y dk_z \exp \left(-\frac{E - \mu}{k_B T} \right) \]
Electron Density

\[n = \frac{N}{V} = \frac{2V}{8\pi^3} \int_{E_c}^{\infty} 4\pi k^2 dk \exp \left[-\frac{E - \mu}{k_B T} \right] \]

\[= \frac{1}{\pi^2} \int_{E_c}^{\infty} \left(\frac{2m(E - E_c)}{\hbar^2} \right) \sqrt{\frac{2m(E - E_c)}{\hbar^2}} \exp \left[-\frac{E - \mu}{k_B T} \right] dE = \int_{E_c}^{\infty} \frac{\sqrt{2m^{3/2} \sqrt{E - E_c}}}{\pi^2 \hbar^3} \exp \left[-\frac{E - \mu}{k_B T} \right] dE = \int_{E_c}^{\infty} D(E) \exp \left[-\frac{E - \mu}{k_B T} \right] dE \]

\[= 2 \left(\frac{2\pi m^* \kappa_B T}{\hbar^2} \right)^{3/2} \exp \left(-\frac{E_c - \mu}{k_B T} \right) \]

\[= N_c \exp \left(-\frac{E_c - \mu}{k_B T} \right) \]

Density of States \(D(E) \):
Number of quantum states per unit volume and per energy interval

Nanoengineering Group

WARREN M. ROHSENOW HEAT AND MASS TRANSFER LABORATORY, MIT
Electron Density

General:

\[n = \int_{E_c}^{\infty} D(E) f(E, \mu, T) dE \]

\[n = 2 \left(\frac{2 \pi m^* \kappa_B T}{\hbar^2} \right)^{3/2} \exp\left(-\frac{E_c - \mu}{k_B T} \right) = N_c \exp\left(-\frac{E_c - \mu}{k_B T} \right) \]

Under Boltzmann Statistics

\[D(E) = \frac{\sqrt{2m^{3/2}} \sqrt{E - E_c}}{\pi^2 \hbar^3} \]

- Conduction Band
- Valence Band
- Chemical Potential \(\mu \)
2.997 Direct Solar/Thermal to Electrical Energy Conversion Technologies
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.