1 Announcement: I want you for schlepping

• Volunteers needed for Wed, 9/14 class meeting
• 2 volunteers at room ____, 5 minutes before start of class
• 2 volunteers after class (please approach me after class)

2 Review

2.1 Written assignment 1 (wr1)

• How relevant is music really as an application of sound recording technology?
• Connection with the telephone: Consider [SOMALGET]

2.2 Reading assignment 1 (rd01)

• What is the physical principle that Christina Kubisch’s Electrical Walks are based on?
• Do the resulting sounds exhibit any similarities to existing musical genres? If so, how come?

3 Preview

3.1 Reading assignment 2 (rd02)

• 4 videos and one article on microphones

3.2 Production analysis 1 (pa1)

• Analysis of a commercially available music production
• Will be presented in class throughout the semester
• Please sign up for one of the available dates!
4 Syllabus, ctd.

- Lecture notes
- Online resources
- Assignment submission format
- Attendance policy
- Use of electronic devices
- Workload
- Academic integrity

5 What is sound?

- Ancient philosophical question: "If a tree falls in a forest, does it make a sound if no one is around to hear it?"

- Rather than answer this question, we will consider sound as both, a
 - physical phenomenon ("yes, it does") and a
 - perceptual phenomenon ("no, it doesn’t").

- Astonishing discrepancies between physics & perception of sound!

- For now (today), we will consider only the physics.

6 Wave propagation

6.1 Longitudinal vs. transverse waves

- Longitudinal waves: Wave travels in direction of particle oscillation
- Transverse waves: Wave travels perpendicularly to particle oscillation
- In real life, waves are often a mixture of both (e.g., water waves)
- Sound waves in air: longitudinal

6.2 Radiation patterns

- Two idealized sound sources: monopole (spherical wave), dipole
- Real-life radiation patterns much more complex and frequency-dependent

6.3 Spherical vs. plane waves

- Two idealized archetypes of wavefronts: spherical vs. plane
- Any spherical wavefront ‘looks plane’ from sufficient distance
6.4 Periodic vs. aperiodic waves

- Periodic waves repeat at regular intervals (by contrast to aperiodic ones)
- Periodicity is a fundamental concept in sound & acoustics
 - Temporal periodicity implies spectral harmonicity
 - Periodicity & harmonicity associated with perception of pitch

6.5 Visualization as a waveform

- Waves are always a temporal and spatial phenomenon – their amplitude is a function of time and location
- Any 2d visual representation must neglect either space or time
- E.g., a waveform plots amplitude over time (but for a single location)
- Common representation for audio editing purposes (e.g., Reaper)

7 Wave properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplitude</td>
<td>A</td>
<td>μPa, mV, ...</td>
</tr>
<tr>
<td>Period</td>
<td>T</td>
<td>s</td>
</tr>
<tr>
<td>Frequency</td>
<td>f</td>
<td>Hz</td>
</tr>
<tr>
<td>Wavelength</td>
<td>λ</td>
<td>m</td>
</tr>
<tr>
<td>Speed of sound</td>
<td>c</td>
<td>m s$^{-1}$</td>
</tr>
<tr>
<td>Phase</td>
<td>ϕ</td>
<td>$^\circ$ or rad</td>
</tr>
</tbody>
</table>

Table 1. Wave properties

7.1 Amplitude

- Which physical unit is used to quantify a wave’s amplitude depends on propagation medium and respective application (more later)
- Different ways to measure amplitude:
 - As peak amplitude or peak-to-peak amplitude (implies periodicity)
 - Integrated over time as root mean square (e.g., sound level meter)
- The physical property of amplitude relates to (but is distinct from!) the perceptual quality of loudness.
 - Everything else being equal, a sound of higher amplitude tends to be perceived as louder.
 - However, amplitude-loudness relationship is non-linear, frequency-dependent, and highly complex!
- Roads (2015, p. 43) contrasts various terms to describe sound ‘magnitude’

$$\text{Equation 1. Root mean square amplitude in time window } \{T_1, T_2\}$$

$$A_{RMS} = \sqrt{\frac{1}{T_2 - T_1} \int_{T_1}^{T_2} A(t)^2 \, dt}$$
7.2 Frequency & period

• Frequency f is reciprocal of wave’s period T
 \[f = \frac{1}{T} \]
 \[\text{Equation 2. Frequency } f, \text{ period } T \]

• Both describe wave’s *temporal* behavior (periodicity in time)

• The physical property of frequency relates to (but is distinct from!) the perceptual quality of *pitch*.
 – Everything else being equal, higher frequencies tend to be perceived at a higher pitch.
 – However, frequency-pitch relationship is similarly complex as amplitude-loudness relationship!

7.3 Wavelength

• Wavelength λ describes wave’s *spatial* behavior (periodicity in space)

7.4 Speed of sound

• Speed of sound c connects wave’s temporal (f) and spatial (λ) behavior
 \[c = \lambda \cdot f \]
 \[\text{Equation 3. Speed of sound} \]

• Refers to speed of wavefront (not particle velocity)

• Increases rapidly with density ρ of propagation medium
 – Higher in liquids than in gases
 – Yet higher in solids

• Depends less heavily on temperature, e.g.: $c_{\text{air}} \approx 331.3 + 0.606 \cdot \theta$

• But for music recording purposes can be regarded as a constant

• Let’s memorize the following value: $c_{\text{air}, 15^\circ C} \approx 340 \text{ m s}^{-1}$

<table>
<thead>
<tr>
<th>Medium</th>
<th>c/m s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air (20°C; 0% hum.)</td>
<td>343.2</td>
</tr>
<tr>
<td>Water (fresh; 25°C)</td>
<td>1497</td>
</tr>
<tr>
<td>Steel</td>
<td>4597</td>
</tr>
</tbody>
</table>

7.5 Phase

• Phase φ of a wave: an elusive concept blamed for all sorts of problems in audio (not unlike parasitic capacitance in electrical engineering)

• Probably because it yields the complex phenomenon of *interference*
 – Occurs whenever two or more waves are superimposed
 – Example: Mixing signals recorded by two microphones in same room
 – *Constructive interference* occurs when waves are in phase
 – *Destructive interference* (phase cancellation) occurs when two waves are anti-phase
 – *Mixed interference* occurs when two waves are out-of-phase
8 Acoustic quantities

8.1 Field quantities vs. energy quantities

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Unit</th>
<th>Nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound pressure</td>
<td>(p)</td>
<td>Pa</td>
<td>Field quantities</td>
</tr>
<tr>
<td>Particle displacement</td>
<td>(\xi)</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>Particle velocity</td>
<td>(v)</td>
<td>m s(^{-1})</td>
<td></td>
</tr>
<tr>
<td>Sound power</td>
<td>(P_{ac})</td>
<td>W</td>
<td>Energy quantities</td>
</tr>
<tr>
<td>Sound intensity</td>
<td>(I)</td>
<td>(W) m(^{-2})</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Acoustic quantities

• Note distinction between field vs. energy quantities
• Will become important for discussion of decibel (section 9)

8.2 Inverse square law & inverse distance law

• Experience tells that sound decays with distance from its source. Why?
 • Two equivalent laws that describe sound decay with distance:
 – Sound pressure \(p \) decreases linearly with distance \(r \) from source
 – Sound intensity \(I \) decreases with square of distance \(r \) from source

 “Time and again, it is claimed that the sound pressure decays with the square of the distance \(r \) from the sound source. One hears that so often that one is almost tempted to believe it.” (Sengpiel 2004, own transl.)

• Validity of either law restricted by two assumptions:
 – Free field (i.e., neither too close nor too far from source in a room)
 – Spherical wave (but radiation of real instruments is more complex)

• Illustration of inverse square law:
 – General relationship: intensity is power over area: \(I = \frac{P_{ac}}{A} \)
 – \(P_{ac} \) is property of source, not sink (hence constant with regards to \(r \))
 – But surface area \(A \) changes with distance \(r \) from source
 – Assuming surface of a sphere (monopole): \(I(r) = \frac{P_{ac}}{4\pi r^2} \propto \frac{1}{r^2} \)

9 The decibel (dB)

• The decibel (or dB) is a logarithmic unit to express a ratio of two values.
• Since the dB expresses a ratio
 – It has the dimension 1
 – One can use it to compare two values of any physical quantity\(^1\)
There always is a reference value (which is often implicitly assumed).

Since the dB is a logarithmic unit,
- It can express larger ratios than a linear measure.
- It suits the somewhat logarithmic nature of human perception.

However, the dB still measures physical quantities (e.g., p, V, etc.)!
- It does not measure perceptual qualities (such as loudness).
- But people misleadingly use dB to say “how loud” a sound is.

9.1 Mathematical definition

\[
L = 20 \cdot \log_{10} \left(\frac{A}{A_0} \right) = 10 \cdot \log_{10} \left(\frac{A^2}{A_0^2} \right)
\]

L level dB

A some field quantity μPa, mV, ...

A^2 some energy quantity W, $W m^{-2}$, ...

A_0 reference field quantity μPa, mV, ...

A_0^2 reference energy quantity W, $W m^{-2}$, ...

9.2 Sound pressure level (sPL)

- Pressure is a field quantity, so use ‘20 version’ of decibel equation.
- Common reference: $p_0 = 20 \mu$Pa $\equiv 0$ dBsPL (threshold of hearing).

9.3 Sound intensity level (sIL)

- Intensity is an energy quantity, so use ‘10 version’ of decibel equation.
- Common reference: $I_0 = 10^{-12} W m^{-2} \equiv 0$ dBsIL (threshold of hearing at 1 kHz).

9.4 Sound power level (sWL)

- Power is an energy quantity, so use ‘10 version’ of decibel equation.
- Common reference: $P_0 = 10^{-12} W = 1 pW \equiv 0$ dBsWL.

\[
L_I = 10 \cdot \log_{10} \left(\frac{I}{I_0} \right)
\]

Equation 8. Sound intensity level L_I.

\[
L_W = 10 \cdot \log_{10} \left(\frac{P_{ac}}{P_0} \right)
\]

Equation 9. Sound power level L_W.

6 of 8
10 Complex sounds

- So far we have considered only very simple (and rather dull) sounds:
 - Pure sine tones whose spectrum contains only a single frequency
 - Stationary sounds that do not change over time
- But the sounds we are interested in recording are more complex:
 - Contain multiple frequencies
 - Change over time

10.1 Visualization as a spectrum

- Waveform = amplitude as function of time
- Spectrum = amplitude as function of frequency
- Another 2D visual representation of sound
- Shows a sound’s frequency content within a given time window (ignoring any changes within that window)
- Useful for analysis (e.g., to determine *harmonicity* of a sound)

10.2 Harmonic sounds

- Periodicity in the time domain (waveform) implies harmonicity in the frequency domain (spectrum).
 \[f_N = N \cdot f_1 \]
- Harmonic sounds *are perceived as pitched*
 - Fundamental frequency determines perceived pitch
 - Spectral composition determines perceived *timbre* (sound color)
- Examples: Sine waves, square waves, triangle waves, sawtooth waves

10.3 Inharmonic sounds

- Sounds that are aperiodic in time have an inharmonic spectrum and are perceived as unpitched.
- Examples: Noise of different colors (e.g., white, pink)²
- Again, spectral composition determines perceived *timbre*

10.4 Envelopes

- The *envelope* of a sound describes its amplitude profile over time
- Different frequency components tend to exhibit quite distinct envelopes!
- E.g., high frequencies on a piano note decay faster than low frequencies

² Roads (2015, p. 103) provides an extensive overview of different noise colors.
10.5 Visualization as a spectrogram

- 3D representation: Amplitude as function of time and frequency
- Shows temporal behavior of different frequency components
- Great for analytical purposes:
 - Baudline: http://www.baudline.com/
 - Sonic Visualiser: http://sonicvisualiser.org/
- Less common as an editing paradigm (exceptions: [Spear], [Audiosculpt])

References & further reading

