Chapter 6. Meeting 6, Controlling Gain and Processing Signals

6.1. Announcements

• Mix Graph 3 due Wednesday

• Audio materials for first Processing Report (due 7 March) will be released on Wednesday

6.2. Review Quiz 1

• ?

6.3. Amplitudes in Nature

• Each overtone has a different dynamic contour in time

• Transients: non-harmonic (non-periodic) attack portion of a sound

• ADSR dynamic contour (envelope)

6.4. Dynamic Range

• Dynamic range: range of available amplitudes

• Standard operating level (SOL): optimum average level on a signal

 • Pro-audio: +4 dBu (-20 dBFS)
• Commercial audio: -10 dBV (-7.8 dBu)

• The maximum: peaking, clipping, saturation, overload, distortion, maximum output level (MOL)
 • As a sine wave is clipped, it becomes a square wave
 • Clipping adds harmonics
 • Example: processorsDistortion.pd

• The minimum: noise floor

Operating levels of an electronic sound system or device. We want to work above the noise floor and below the point of distortion.

Image by MIT OpenCourseWare.

• Signal to noise ratio
• Peak to average ratio
• Headroom: space between SOL and clipping (20 dB is standard)

6.5. Amplitude Meters

• A simple measure of signals power

• Potentially misleading

• Many varieties

• Considerations when evaluating amplitude meters

 • Peak or average?
 • Units in dB or something else?
 • Negative and/or positive values?
 • Where is 0 dB and what does it mean?
 • What is negative infinity?

6.6. dB Meters

• dBu Meters: negative infinity to +24 dBu (sometimes 20 dBu)

• dBFS Meters: negative infinity to 0 dBFS
• dB SPL Meters: 0 to 120 dB SPL

• Comparisons
 • +4 dBu = -20 dBFS (sometimes -16 to -18 dBFS)
 • -10dBV is equivalent to -7.8 dBu

6.7. VU and RMS Meters

• Root Mean Square (RMS): an average
 • Mathematical average

The relationship between peak and rms levels, for a typically complex sound signal.

Image by MIT OpenCourseWare.

• Average the square of a number (or a window) of samples, then take the square root
• RMS of a square wave is greater than that of a sine wave
For a square wave, the peak, rms, and average level are equal. For a sine wave, the rms and average levels are lower.

- Volume Units (VU): an average
- 0 VU is equal to +4 dBu or 1.228 V RMS for a sine wave
- 0 VU is equal to -20 dBFS (sometimes -18 to -16 dBFS)
- Change in 1 VU may be 1 dB change
- Integrates 300 msec of change
- Peak may be as much as 15 dB (8 to 20 dB) higher than VU reading
- Peak Program Meter (PPM)
• Scale from 1 to 7; each segment is 4 dB change
• Faster attack time than VU meters (10 ms)
• PPM 6 = 100% reading, +4 dBu = 0 VU
• Adjusts after 10-12 ms

6.8. Meter Examples
6.9. Changing Amplitudes

- Pre-amp (trim): amplifier with a wide range of gain (0 to 60 dB) designed for bringing very quiet signals up to SOL.
- Power amp: amplifier for taking a signal from SOL to a high-powered signal necessary to drive speakers.
- Pad (attenuator): reduces gain by a fixed amount with a switch (-6 dB, -20 dB).
- Fader: scales a signal at SOL: unity (no change), boost +10 dB, attenuate to -infinity dB.
- Direct Box: convert from -10 dBV to +4 dBu.

6.10. Gain Staging

- Every signal goes through numerous amplifiers from source to destination.
- Each amplifier is a gain stage.
- Each amplifier (and any process in between) adds noise (has its own noise floor).
- Each gain stage, if above unity, can amplify the last gain stage’s noise floor.
- Optimal gain staging: first gain stage does all amplification; all subsequent gain stages are at unity.
- Optimal gain staging: as much as possible as early as possible.

6.11. Gain Staging: Example

- Inserting a device with a poor signal to noise ratio can degrade the entire signal path.
6.12. Level Setting: Principles

- The essential first step when working with an input
- Mantra: as much as possible as early as possible
- Optimizes signal to noise ratio with ideal gain-staging
6.13. Level Setting: Procedure

- Reset, clear, and zero all controls (set trim at minimum)
- Connect or select input
- Set meters (if necessary) to display only the trim gain stage and skip other gain stages
 - On some mixers, this may mean engaging SOLO
 - On some mixers, this may mean engaging Pre-fader listen (PFL) SOLO
- Must get typical material from the source (musician, device, et cetera)
- Raise the trim slowly
- Find amplitude peaks and estimate average peaks with meters
- Continue to raise the trim until average peaks are at +4 dBu (-20 dBFS, 0 VU)

6.14. Level Setting: Example

- Tascam HD-P2 portable recorder

6.15. Level Setting: Example

- Avalon AD 2022 preamp
6.16. Level Setting: Example

- Mackie 1604 VLZ3
6.17. Automation: Fader Levels

- Automating fader levels in a DAW
- Live: under Mixer, select Track Volume

 Double click to add / remove points

 Can view view on waveform or in separate lane

![Image of DAW interface showing automation of fader levels](image)

6.18. Panning Amplifiers: Linear

- Take a signal, split into two signals, and inversely vary amplitudes
- A fader that as one turns up, the other turns down
- A bad approach (1 is left, 0.5 is middle, 0 is right)

\[
L = (1 - x) \\
R = x
\]
6.19. Panning Amplifiers: Non-Linear

- Must reduce amplitude in center to reduce increase in loudness
- Reduction between 3 dB and 4.5 dB

6.20. Automation: Stereo Panning

- Automating pan position in a DAW
• Live: under Mixer, select Track Panning

 Double click to add / remove points

 Can view view on waveform or in separate lane

Courtesy of Ableton AG. Used with permission.