Chapter 8. Meeting 8, Interconnections, Signal Flow, Busses, and Patch Bays

8.1. Announcements

• Audio materials for first Processing Report (due 7 March):
 audioProcReport01.zip
• About Eargle readings
• Need schlep crew of three for Wednesday at 3:10 at my office
• Need volunteer solo musicians for Wednesday who can bring instruments

8.2. Quiz

• ?

8.3. Pro Audio and Consumer Audio

• Standard operating level and signal-to-noise ratio
• Cables
• Price

8.4. Cables

• Wires (conductors): carry voltages or grounds
• Shielding: meso level of protection
• Insulation: outer level of protection
• Connectors and Jacks: provide easy interface, can be male (M) or female (F)

8.5. Signals, Voltages, and Grounds

• Analog sound can be represented as a changing voltage
• Grounds are a point of zero voltage
• For safety: a path for faulty currents

• Ground loops: grounds with differing electrical potentials on the same connection (not exactly a ground)

 May result in a 60 Hz hum

8.6. Analog Cables: Types

• Unbalanced
 • Two conductors: one signal, one ground
 • SOL: -10 dBV
 • High impedance
 • Length Limit: 25 feet

• Balanced
 • Three conductors: two signals, one ground
 • SOL: +4 dBu
 • Low impedance
 • Length Limit: 1000 feet
 • Active and transformer balanced

8.7. Analog Cables: Connector Examples

• TS
• RCA (Phono)

Figure C: TS Plug

• TRS

Figure D: RCA Plug

© LOUD Technologies, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
Source: Mackie user manual.
• XLR

Inputs are always XLR-F, outputs are always XLR-M

Figure A: XLR Connectors

• TT (Bantam)
8.8. Balancing a Signal

- Take a positive and negative (180 degree phase inversion) of a signal
- Transmit over a distance
- At the destination, make the negative positive again
- Sum the signals, than divide in half
- As a procedure: (1) signal (2) signal+ | signal- (3) signal+ noise+ | signal- noise+ (4) signal+ noise+ | signal+ noise- (5) signal++ (6) signal

8.9. Cable Internals: Conventional Two Conductor

- One braided wire, with shield used as second conductor (ground)
• Called guitar cable, instrument cable

8.10. Cable Internals: Conventional Three Conductor

• Two braided wires, with shield used as second conductor (ground)

8.11. Cable Internals: Star Quad

• 5 conductors: 1 ground, 2 positives, 2 negatives
• Four braided wires, with shield as fifth conductor
8.12. Converting from Balanced to Balanced

- Use a cable (best) or adapter (not recommended)

8.13. Converting from Unbalanced to Balanced: DI Box

- Never use an adapter or a cable
- Direct Injection Box: convert -10 dBu to +4 dBu and balance signal
- Transformer isolation removes ground-hum noise

Figure 16.4. Schematic for a direct (DI) box.
• Used to connect guitars, basses, keyboards, guitar/bass amp direct outs, turntables, drum machines, synths, et cetera into pro-audio inputs

• Can be used in forward and reverse to extend the run of an unbalanced signal

• Mini Stereo: 3 conductors used for 2 unbalanced channels

• Y or insert cable: 3 conductors used for 2 unbalanced signals
Figure E: Insert Plug

Y-cord insert cable

© LOUD Technologies, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. Source: Mackie user manual.

- Banana
- Designed for amplified signals
- Speaker Wire
• Speakon
 • Designed for high-wattage, amplified signals

8.15. Digital Cables: Types
 • Always handle two or more channels per cable
 • Unbalanced
 • Balanced
 • Fiber Optic

8.16. Digital Cables: Examples
 • SPDIF (Coaxial): looks like RCA
- AES/EBU: looks like XLR
- Toslink (2 channel optical)
8.17. Snakes

- Bundle cables in a single insulation

- ADAT/Lightpipe (8 channel optical)
- MADI (optical or coaxial up to 64 channels)
Courtesy of Canare Corporation of America. Used with permission.
8.18. Power: AC and DC, Phantom Power

- Alternating current (AC): 120 volts RMS in a 60 Hz sine wave
- Direct current (DC): not a sine wave
- Transformers: rectifies and smoothes AC into DC
- Phantom power: +48 Volt DC transmitted on +/- signal lines of a balanced cable

8.19. The Mixer and the Patchbay

- Mixer: signal control, processing, combination, and routing
• Combines fundamental tools used in almost every signal processing context
• Patchbay: signal routing
• Offers tools that have evolved into conceptual paradigms: may be hardware, may be software

8.20. The Mixer: Primary Components

• A mixer can be seen as having two primary components
• Channel strips
 • A number of commonly used routing and processing tools bundled together
 • Should be called a “track strip”: may be applied to one or more channels
 • Physical mixers are made of numerous (4, 12, 16, 32, 64) channel strips
• Busses
 • A signal destination (a repository that signals lead in to, output may go to another channel or physical output)
 • May be called mains or main bus, groups or sub-groups, or auxiliaries, aux sends, aux

8.21. Channel Strip: Basics

• Amplifiers, processors, and distributors (bus assignment)
• Common vertical orientation is not the same as signal flow

8.22. Channel Strip: Components

• Input or input selector
• Preamp, trim, line/mic level switch, pad, phase
• Insert: serial processing slot
• Low cut filter
• Auxiliary sends: for parallel processing or fader-controlled bus assignment
• Eq and dynamics (serial processors)
 • Shelves and parametric eq
• Dynamic effects such as compressors, limiters, gates, and expanders

• Mute and solo control

• Fader

• Panning and bus assignment

 • Bus assignments may be stereo or multichannel

 • May use panning to assign to one channel of a stereo bus

8.23. Channel Strip: Example: Mackie 1604

• Vertical orientation is not the same as signal flow

• Channel strip
8.24. Channel Strip: Example: Mackie Onyx 2408

- Channel strip
8.25. Channel Strip: Example: SSL AWS 900

- Channel strip
8.26. Channel Strip: Example: SSL XLogic

• Channel strip

8.27. Busses

• Channels may output to one or more bus
• Other channels may take a bus as an input
• Used for grouping and processing related channels
• Used for distributing sub-mixes to other processors or outputs

8.28. Busses: Main-Outs, Sub-Outs, Control Room

• Main Outs: final output destination to a physical output; may be stereo or multiple channel
• Sub Outs: busses to alternative physical outputs
• Control Room: a bus designed to deliver audio to the engineer, not the main outs

8.29. Busses: Grouping

• Assign a number of channels to a group channel
• Use the group channel for shared processing or fader control
• Then, assign the group to the main output

8.30. Busses: Auxiliaries

• Channel strip bus assignment with a rotary fader
• Used for creating a sub-mix different from the channel fader position
• On a physical mixer, physical output might be labeled auxiliary or auxiliary send
• On a virtual mixer, auxiliaries are tracks that receive a bus as input
- Used to provide a different mix to monitors or outboard processors
- Can be pre- or post-fader

![Pre Vs. Post diagram](image)

8.31. Patch Bay
- Expose all inputs and outputs in one place
- Can refer to a stand-alone device, or to the i/o section of a larger device
- Bring i/o from the rear of all devices to a front-panel interface
- Examples

© LOUD Technologies, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Source: Mackie 1604 mixer user manual.

© (from top) Samson Technologies, Harman, and Switchcraft Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
8.32. Patch Bay: Concepts

- Vertical pairs matter
- Out over in: from front, outputs are represented on top, inputs are represented on bottom
- From rear: connect outputs from other devices on top; connect inputs to other devices on bottom
- Three common configurations: normal, half-normal, and de-normal

8.33. Patch Bay: Normal

- A normal connection is a default connection that does not require a patch
- A normal connection flows from the rear top to the rear bottom; no front-panel patch is necessary
- Can be half normal or full normal: difference is what happens when a cable is inserted into the front top
 - half normal: inserting a cable into front top does not break the normal connection; the signal is sent two places at once
 - full normal: inserting a cable into front breaks the normal connection; the signal is sent one place (out the front top)

8.34. Patch Bay: Denormal/Open

- What you see is what you get
- No internal normal connection; front simply connects to rear
- Outputs are still over inputs

8.35. Patch Bay: All formats

-
8.36. MOSS: Diagrams
8.37. Reading: Eargle: Chapter 3, The Pressure Microphone

- How are capacitor pressure microphones affected by temperature?
- Is it possible that a microphone pad can change frequency response?
- What cable lengths does Eargle say are possible with a microphone and low capacitance cable?
- Which type of condenser might we expect to have a larger self-noise, a small or a large diaphragm?
- What are the advantages of using an electret material in the design of a capacitor microphone?
• How does a piezoelectric microphone work? What are some applications?