1. Write a complete system description for the instrument function of a planar x-ray imager (assume scanned fan beam). Include:
 - Finite size source
 - Heal effect on source intensity and energy spectrum
 - Oblique angle effects
 - Depth dependent magnification
 - Quantum efficiency and PSF for the scintillator/photographic plate.

2. For a cylindrical object (long axis perpendicular to the beam) calculate the profile of X-ray intensity in a fan beam geometry, assuming that the beam is mono-energetic.

3. Calculate the effect of beam hardening on the CT image of a disk.

4. For the following sample, show (a.) the projections and (b.) the filtered projections
4. A sinusoidally modulated x-ray image is recorded by a one-sided screen film system as shown below. Find the recorded S/N as a function of frequency, where the signal is the sinusoidal component and the noise is the average background. On average the screen produces \(l \) photons per x-ray photon, \(t \) of which are transmitted to the emulsion where \(r \) is recorded. The pixel area of the film is much smaller than the system resolution. Neglect any critical angle effect between the screen and the film.

X-ray photon number as a function of \(z = n_0 \cos(2 \pi k z) \).

5. Write a program that calculates the Radon transform of an object function, then Fourier filters the projects, and finally reconstructs an image via back projection.