Sustainable Energy
10/7/2010

Toolbox 8:
Thermodynamics and Efficiency Calculations
First law: conservation of heat plus work

- Heat ($Q$) and work ($W$) are forms of energy.
- Energy can neither be created or destroyed.

$$\Delta E = Q + W$$

- Applies to energy (J, BTU, kW-hr, ...) or power (W, J/s, hp)
- Work comes in several forms:
  - $PdV$, electrical, $mgh$, kinetic, ...

Conservation of Energy discovered in 1847 (Helmholtz, Joule, von Mayer)
Energy, mass “balances”.  “Control Volume”

Conservation of energy:

\[ \Delta E = Q + W + \sum_k E_k^{in} n_k^{in} - \sum_k E_k^{out} n_k^{out} \]

Chemical species conservation:

\[ \Delta n_k = n_k^{in} - n_k^{out} + \int \int r_k \ dV \ dt \]

\( r_k \) is chemical rate of formation of kth species reactions don’t change total mass or energy.

Converting heat and work

- In theory various forms of work can be interconverted with high efficiency (i.e. without making a lot of heat):
  - Kinetic, mgh, electricity
  - In practice it is difficult to efficiently convert some types of work: chemical/nuclear/light tend to make a lot of heat during conversions.

- Work can easily be converted to heat with high efficiency:
  - Electrical resistance heaters, friction, exothermic reactions (e.g. combustion, nuclear reactions)

- **Impossible** to convert Heat to Work with high efficiency:
  - Coal plants (~35%), nuclear plants (~35%), natural gas plants (~50%), automobiles (~20%)
Entropy (S) and the second law of thermodynamics

- Entropy: a measure of disorder
- Entropy of the universe is \textit{always increasing}
  - Moves to more statistically probable state
- Entropy is a state function

\[
d S \equiv \left( \frac{\delta Q}{T} \right)_{\text{rev}}
\]

\[
\Delta S_{\text{universe}} \geq 0
\]

\textit{2nd Law discovered by Rudolf Clausius in 1865}
Heat-to-work conversions

Heat-to-work conversions

\[ Q_{\text{in}} \]

\[ W_{\text{in}} \rightarrow \rightarrow \rightarrow W_{\text{out}} \]

\[ Q_{\text{out}} \]
A simple heat engine

\[ \dot{Q}_H \rightarrow \dot{W} \]

**Energy balance:**

Accumulation = In – Out + Generation – Consumption

\[ 0 = \dot{Q}_H - \dot{W} \quad \Rightarrow \quad \dot{W} = \dot{Q}_H \]

**Entropy balance:**

Accumulation = In – Out + Generation – Consumption

\[ 0 = \frac{\dot{Q}_H}{T_H} + \dot{S}_{\text{gen}} \quad \Rightarrow \quad \dot{S}_{\text{gen}} = -\frac{\dot{Q}_H}{T_H} < 0 \]

Violation of the 2nd Law! Not possible. Heat engine *must* reject heat, cannot convert all heat to work (since that would reduce entropy of the universe).
A possible heat engine

Energy balance:
Accumulation = In – Out + Generation – Consumption

\[ 0 = \dot{Q}_H - \dot{Q}_C - \dot{W} \rightarrow \dot{W} = \dot{Q}_H - \dot{Q}_C \]

Entropy balance:
Accumulation = In – Out + Generation – Consumption

\[ 0 = \frac{\dot{Q}_H}{T_H} - \frac{\dot{Q}_C}{T_C} + \dot{S}_{\text{gen}} \rightarrow \dot{S}_{\text{gen}} = \frac{\dot{Q}_C}{T_C} - \frac{\dot{Q}_H}{T_H} \]

No obvious violation of the second law.
Maximum efficiency of heat engine

\[ \eta_{\text{heat\rightarrow work}} \equiv \frac{\dot{W}}{\dot{Q}_H} \]

To maximize efficiency:

\[ \dot{S}_{\text{gen}} = \frac{\dot{Q}_C}{T_C} - \frac{\dot{Q}_H}{T_H} = 0 \quad \rightarrow \quad \dot{Q}_C = \frac{T_C}{T_H} \dot{Q}_H \]

Algebra:

\[ \eta_{\text{heat\rightarrow work, max}} \equiv \frac{\dot{W}}{\dot{Q}_H} = \frac{\dot{Q}_H - \dot{Q}_C}{\dot{Q}_H} = \frac{\dot{Q}_H - \dot{Q}_H \frac{T_C}{T_H}}{\dot{Q}_H} = 1 - \frac{T_C}{T_H} \]
Carnot efficiency

\[ \eta_{\text{Carnot}} \equiv \frac{\dot{W}_{\text{max}}}{\dot{Q}_H} = 1 - \frac{T_C}{T_H} \]

- Sets upper limit on work produced from a process that has a hot and cold reservoir
- Examples: coal power plant, gas power plant, nuclear power plant, internal combustion engine, geothermal power plant, solar thermal power plant
- Note: All temperatures must be expressed in Kelvin (or Rankine)!
- \( T_c \) usually cannot be below environmental \( T \). \( T_H \) usually limited by materials (melting, softening, oxidizing) or by need to avoid burning \( \text{N}_2 \) in air to pollutant NO.
Free Energy and Exergy: Measures of How Much Chemical Energy is potentially available to do work

- Usual measure of ability to do work: Free energy
  \[ G = H - TS = U + PV - TS \]
- We have some minimum temperature in our system (usually \( T_{\text{cooling}} \), \( \sim 300 \text{ K} \)), and a min pressure (e.g. \( P_{\text{min}} = 1 \text{ atm} \))
- Cannot reduce entropy, so \( T_{\text{cooling}} \), \( S \) and \( P_{\text{min}} \), \( V \) not available.
- Call \( G - T_{\text{cooling}} S - P_{\text{min}} V \) the “exergy”: how much chemical energy going in to a device is available to do work.
- Should also consider the lowest-chemical-energy products (e.g. \( \text{H}_2\text{O} \) and \( \text{CO}_2 \)), not ordinary standard states of enthalpy (\( \text{H}2, \text{O}2, \text{graphite} \)).
- A ton of room temperature air has quite a lot of thermal energy, but none of that energy can be converted into work.
Rankine cycle

Which of these Six Cases are not Feasible?

- Feasible
- Not Feasible. Violates Second Law
- Feasible. Example: electric heater
- Feasible. Heat Engine
- Feasible. Heat Pump
Common heat-to-work engines in practice

- **Rankine cycle**: (shown before)
- **Brayton cycle**: combustion gases are directly expanded across a turbine and exhausted; “Combustion Turbine” CT gas plants
- **Combined cycle** (CC): Brayton cycle followed by a Rankine cycle on the turbine exhaust
  - IGCC: CC applied to syngas produced from coal
- **Internal combustion engine**: combustion gases powering a piston
In most Heat Engines, Work extracted as $PdV$

- Boiling a liquid under pressure: big volume change, lots of $W = \int PdV$
- Turbines, pistons extract mechanical work from the pressurized gas by a nearly adiabatic expansion:
  \[
  T_{hi} V_{hi}^{\gamma^{-1}} = T_{lo} V_{lo}^{\gamma^{-1}} \quad P_{hi} V_{hi}^{\gamma} = P_{lo} V_{lo}^{\gamma}
  \]
  \[
  W = \frac{nRT_{hi}}{\gamma-1} \left( 1 - \left( \frac{V_{highP}}{V_{lowP}} \right)^{\gamma^{-1}} \right) \quad \gamma = C_p / C_V
  \]

- Would like to arrange so that $P_{lo} \sim 1$ atm, $T_{lo} \sim$ lowest feasible temperature
  - Low $T$ good for Carnot efficiency
  - If we exhaust the gas, don’t want to waste enthalpy
  - $T$, $P$ both drop in expansion, but at different rates
Impractical to arrange ideal $P_{hi}$, $T_{hi}$

- Material limits on pressure, temperature
  - Steam cycles confined to relatively low $T_{hi}$
- Internal Combustion Engines, Turbines
  - Exhaust tends to be too hot ($T_{lo} >>$ ambient)
  - A lot of energy carried away as waste heat in the exhaust (LHV, exergy analysis). So despite high $T_{hi}$, these are usually much less efficient than Carnot.
- Need to combine “Topping” and “Bottoming” cycles.
Combined heat and power (CHP)

Heat and power are often produced together to maximize the use of otherwise wasted heat.

- **Topping** cycles produce electricity from high T, and use the waste heat for other process needs (e.g., MIT co-gen facility)
- **Bottoming** cycles are processes which use medium heat T heat to generate electricity.
Heat pumps

- Move heat from cold to hot
- **Coefficient of performance (COP)**

\[ COP_w = \frac{\dot{Q}_H}{W} \leq \frac{T_H}{T_H - T_C} \]

- Practically, COPs are ~3
  - 3x as much heat can be supplied as electricity supplied
  - Limited by power generation efficiency
Select the More Efficient Home Heating Option

• Burn NG with 90% efficiency furnace

OR

• Use electricity to drive heat pump
  – Heat pump COP is 3
  – NG Power Plant Combined Cycle with 50% efficiency
  – Transmission and distribution losses are 10%
Air conditioning and refrigeration

- Type of heat pump
- Coefficient of performance (COP)

\[
COP_s = \frac{\dot{Q}_C}{\dot{W}} \leq \frac{T_C}{T_H - T_C}
\]
Can convert heat to chemical energy...but still run into Carnot limit

- \( \text{CH}_4 + 2 \text{H}_2\text{O} + Q = \text{CO}_2 + 4 \text{H}_2 \)
- \( \Delta H_{\text{rxn}}>0 \) and \( \Delta S_{\text{rxn}}>0 \)
- Need to supply heat at high \( T \) (to shift equilibrium to the right)
- Remove hot \( \text{H}_2 \) from catalyst to “freeze” the equilibrium.
- When we cool hot \( \text{H}_2 \) to room \( T \), emit heat at lower \( T \) (makes additional entropy).
Conclusions

1. Heat plus work is conserved (from the First Law).
2. Heat can’t be converted to work with 100% efficiency (from the Second Law).
3. Real processes suffer from non-idealities which generally keep them from operating close to their thermodynamic limits (from real life, plus the Second Law).
4. Chemical, nuclear energy in principle are “work”, but most practical devices convert them into heat, then use heat engines to extract PdV work: Carnot limit.
5. Careful accounting for energy/exergy and the limits on what is possible is necessary for assessing new energy proposals. Relatively easy to do, and the results are much more solid and exact than other aspects of the problem like financing, economics, marketing, politics.