Lecture 7

Design Issues

Power Cycles for Nuclear Plants
Topics to be Covered

• Design Issues for nuclear plants Kneif (8,9 10)

• Rankine Cycle
 – Basic
 – Superheat
 – Multi-fluid cycles
 – Brayton cycle

• Pressure Ratios
Reactor Design Interactions

FIGURE 8-3
Reactor design interactions. (From A. Sesonske, Nuclear Power Plant Design Analysis, TID-26241, 1973.)
Reactor Core Design

• Thermal Analysis
 – Set inlet and outlet temperature
 – Assume radial peaking factor to calculate hot channel coolant temperature
 – Assume axial flux profile and engineering factors to calculate hot channel coolant temperature
 – Calculate clad surface temperature profile for hot channel assuming a clad surface heat flux and empirical heat transfer coefficient
Design Process (2)

- Set clad and gap conductance materials and dimensions
- Calculate fuel surface temperature profile

- Fuel Pin Composition and diameter selection
 - For a given fuel material use thermal conductivity and peak temperature to determine limiting heat rate for hot channel
 - Set pellet diameter based on fuel fabrication cost
 - Recalculate heat fuel and temperature
Reactor Design (3)

- Core sizing
 - Calculate number of fuel pins from core power and length
 - Chose geometry and spacing
 - Calculate physics parameters – axial and radial power profiles
 - Assess safety (reactivity coefficients) and power conversion factor (core lifetime)
 - Calculate required coolant velocity
Reactor Design (4)

- Fuel Cycle Economic Analysis
- Fuel Pin Structural Analysis
- Hydraulic Analysis
 - Pressure drops, flow distributions
 - Pumping power requirements
- Safety Analysis
 - Reactivity coefficients for accident analysis
- Fuel element reliability analysis – fuel stress etc.
- Post Irradiation handling considerations – cooling needs
Fuel Performance

Figure 9-4
Mixed-oxide fuel restructuring versus linear heat rate. (Photograph courtesy of the Hanford Engineering Development Laboratory, operated by Westinghouse Hanford Company for the U.S. Department of Energy.)
TABLE 9-1
Representative Fuel Design Parameters for Water-Cooled Reactor Systems

<table>
<thead>
<tr>
<th>Design parameter</th>
<th>PWR</th>
<th>BWR</th>
<th>CANDU</th>
<th>RBMK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 x 15</td>
<td>17 x 17</td>
<td>7 x 7</td>
<td>8 x 8</td>
</tr>
<tr>
<td>Rod diameter (mm)</td>
<td>10.7</td>
<td>9.50</td>
<td>14.3</td>
<td>12.5</td>
</tr>
<tr>
<td>Active fuel height (m)</td>
<td>3.66</td>
<td>3.66</td>
<td>3.66</td>
<td>3.66</td>
</tr>
<tr>
<td>Clad thickness (mm)</td>
<td>0.61</td>
<td>0.58</td>
<td>0.81</td>
<td>0.86</td>
</tr>
<tr>
<td>Pellet-clad diametrical gap (mm)</td>
<td>0.19</td>
<td>0.17</td>
<td>0.28</td>
<td>0.23</td>
</tr>
<tr>
<td>Average linear heat rate (kW/m)†</td>
<td>23.1</td>
<td>17.8</td>
<td>23.3</td>
<td>19.8</td>
</tr>
<tr>
<td>Average power density (kW/l)‡</td>
<td>106</td>
<td>105</td>
<td>51</td>
<td>56</td>
</tr>
</tbody>
</table>

† Calculated from core thermal power and total length of fuel.
‡ Calculated from core thermal power and active core volume (for CANDU and RBMK, volume is that for pressure tubes only.).
FIGURE 1-6
Fuel assembly for a representative boiling-water reactor. (Adapted courtesy of General Electric Company.)
Fuel Rod Design Interactions

FIGURE 9-6
Flow chart for representative fuel-rod design interactions. (From D. R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, TID-26711-P1, 1976.)
Typical Protective System

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
Daya Bay PWR – French Design

FIGURE 8-4
Cut-away drawing of the Guangdong pressurized water reactor [Courtesy of Nuclear Engineering International (Sept. 1987), with permission of the editor.]
Schematic of Plant Design

FIGURE 8-5
Schematic diagram of the fluid subsystems of the Ringhals, Units 3 and 4 pressurized water reactors [Courtesy of the Swedish State Power Board.]
Key Reactor Systems

- Reactor Coolant System
- Heat Removal Systems
- Nuclear Support Systems
- Plant Service Systems
- Nuclear Safety Systems
- Balance of Plant
Power Conversion Systems

- Carnot Efficiency
- Rankine Cycle Fundamentals
- Superheat
- Multi-Fluid Cycles
- Choices for Efficiency and Cost
ENERGY IN THE FORMS OF HEAT AND WORK

Heat: Energy of a system associated with the unordered motion of the system’s molecules (indicated by the system’s temperature).

Work: Energy of a system associated with the ordered motion of the system’s molecules (Work = Force * Displacement).
IDEAL HEAT ENGINE
VAPOR-POWER CYCLES

• Carnot Cycle (Ideal, Reversible Engine)
 - Heat addition and rejection at constant temperatures
 - System expansion and compression at constant entropies

• Rankine Cycle (Two-Phase Working Fluid)
 - Heat addition and rejection at constant temperatures
 - System expansion and compression at constant entropies

• Brayton Cycle (Single-Phase Working Fluid)
 - Heat addition and rejection at constant temperatures
 - System expansion and compression at constant entropies
REVERSIBILITY AND IRREVERSIBILITY

Reversible Process: A process involving the change from system State A to State B, such that the system can be restored to State A with no net change in the status of any other system in the universe.

Irreversibility: Net work that must be supplied by an external system in order to restore the system of interest from State B back to its initial state, A.

Sources of Irreversibility:

• Heat not converted to work in association with heat from a hot body to a colder body.

• Work that is transferred from one system to another without being preserved in the form of work (i.e., work that is converted to heat via friction during a process).
Temperature Entropy Diagrams

Fig. 2-1. TS diagram of Carnot cycle.

Fig. 2-6. TS diagram of cycle with irreversible expansion and irreversible constant-temperature heat addition.
IRREVERSIBILITY IN HEAT TRANSFER

Heat Source
Temperature = T_1

\[Q \]

Carnot Engine \[W = \eta_{\text{Carnot}} Q \]

\[(Q - W) \]

Heat Sink
Temperature = T_2

\[\eta_{\text{Carnot}} = \frac{T_1 - T_2}{T_1} \]

Irreversibility, I, in transferring heat, Q, is the work not performed, \(W = \eta_{\text{Carnot}} Q \), due to absence of a perfect heat engine.
Basic Rankine Cycle

Some Thermodynamic Aspects of Nuclear I

Primary coolant Working fluid Load

Heat exchanger Condenser

FIG. 2-5. Schematic of two-loop nuclear power plant.

FIG. 2-4. Internally reversible Rankine cycle with saturated vapor.
Steam Generators

FIG. 2-10. Heat addition to vaporizing fluid with a variable-temperature source; counter-flow heat exchanger.

FIG. 2-11. Heat addition to vaporizing fluid with a variable-temperature source; parallel-flow heat exchanger.
Rankine Cycle with Feedwater Heaters

FIG. 2-9. Schematic of Rankine cycle with two closed-type feedwater heaters.
REFINED RANKINE CYCLE USING SUPERHEATING AND REGENERATIVE HEATING

Thermal Efficiency $\approx \frac{\text{Heat Added} - \text{Heat Rejected}}{\text{Heat Added}} \equiv 0.42_{\text{max}}$
Power Cycles

FIG. 2-12. Internally reversible Rankine cycle with superheat and a variable-temperature heat source.

FIG. 2-13. Ts diagram of internally reversible supercritical and reheat cycles.
Binary Cycle Plants

FIG. 2-16. Schematic of a mercury-steam binary-vapor power plant.

FIG. 2-17. TS diagram of internally reversible mercury-steam cycle.
Gas Reactor Cycles

• Brayton Cycle
• Brayton-Rankine Dual Cycle
• Real Example – Pebble Bed
• Choices for Efficiency and Cost
 – Materials
 – Costs
 – Efficiency Trade-offs
Brayton Gas Cycle - Open

Fig. 7-1. The direct open cycle. (a) Cycle diagram; (b) $T-s$ diagram.
Perfect Gas Relationships

Table 2-1

<table>
<thead>
<tr>
<th>Process</th>
<th>p, v, T relationships</th>
<th>$u_2 - u_1$</th>
<th>$h_2 - h_1$</th>
<th>$s_2 - s_1$</th>
<th>W (nonflow)</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isothermal</td>
<td>$T = \text{const}$</td>
<td>0</td>
<td>0</td>
<td>$(R/J) \ln (v_2/v_1)$</td>
<td>$(p_1v_1/J) \ln (v_2/v_1)$</td>
<td>$(p_1v_1/J) \ln (v_2/v_1)$</td>
</tr>
<tr>
<td>Constant pressure</td>
<td>$p = \text{const}$</td>
<td></td>
<td></td>
<td>$c_p(T_2 - T_1)$</td>
<td>$p(v_2 - v_1)/J$</td>
<td>$c_p(T_2 - T_1)$</td>
</tr>
<tr>
<td>Constant volume</td>
<td>$v = \text{const}$</td>
<td>$c_v(T_2 - T_1)$</td>
<td>$c_p(T_2 - T_1)$</td>
<td>$c_v \ln (T_2/T_1)$</td>
<td>0</td>
<td>$c_v(T_2 - T_1)$</td>
</tr>
<tr>
<td>Isentropic</td>
<td>$s = \text{const}$</td>
<td>$c_v(T_2 - T_1)$</td>
<td>$c_p(T_2 - T_1)$</td>
<td>0</td>
<td>$p_2v_2 - p_1v_1$</td>
<td>0</td>
</tr>
<tr>
<td>(adiabatic</td>
<td>$p_1v_1^r = p_2v_2^r$</td>
<td></td>
<td></td>
<td></td>
<td>$J(1 - \gamma)$</td>
<td>0</td>
</tr>
<tr>
<td>reversible)</td>
<td>$T_2/T_1 = (v_1/v_2)^{r-1}$</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Throttling</td>
<td>$h = \text{const}$</td>
<td>0</td>
<td>0</td>
<td>$(R/J) \ln (v_2/v_1)$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Constant pressure</td>
<td>$T = \text{const}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polytropic</td>
<td>$p_1v_1^n = p_2v_2^n$</td>
<td>$c_v(T_2 - T_1)$</td>
<td>$c_p(T_2 - T_1)$</td>
<td>$c_v \ln (p_2/p_1)$</td>
<td>$p_2v_2 - p_1v_1$</td>
<td>$c_v \left(\frac{\gamma - n}{1 - n} \right) (T_2 - T_1)$</td>
</tr>
</tbody>
</table>
Indirect Brayton Open Cycle

FIG. 7-2. The indirect open cycle.
Direct Closed Brayton Cycle

![Diagram of Direct Closed Brayton Cycle]

FIG. 7-3. The direct closed cycle.
Indirect Closed Cycle – Gas to Gas
Indirect Gas to Steam Generator

Fig. 7-5. The indirect closed cycle, gas to water.
FIG. 7-6. Variation of molar c_p with temperature for various gases.
Ideal Brayton Cycle

FIG. 7-7. An ideal Brayton cycle.
Non-Ideal Brayton Cycle

FIG. 7-12. Closed nonideal Brayton cycle with regeneration.
BRAYTON CYCLE WITH REGENERATIVE HEATING

T

S

Heat Added

Heat Rejected

Prof. Andrew C. Kadak, 2008

Page 39

Massachusetts Institute of Technology
Department of Nuclear Science & Engineering

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
FIG. 8-1. Schematic of a simple-cycle gas-steam-reactor power plant.

FIG. 8-2. Temperature-enthalpy diagram of a gas-steam heat exchanger in simple cycle.
COMBINED CYCLE BRAYTON (Topping), RANKINE (Bottoming)

Gas Turbine Brayton Cycle

Steam Rankine Cycle

Heat Added

Heat Rejected

Temperature

Entropy

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
VARIOUS VAPOR POWER CYCLES OPERATING BETWEEN THE SAME TEMPERATURE LIMITS
Reading and Homework Assignment

1. Read Knief Chapter 8, 9, 10
2. Outside Reading El-Wakil Chapter 2
3. Problems 2.7, 7.4