Operational Reactor Safety
22.091/22.903

Professor Andrew C. Kadak
Professor of the Practice

Safety Systems and Functions
Lecture 9
Topics to be Covered

• Fundamentals of Safety
 – Introduction to Safety Analysis
 – Defense in Depth
 – Design Basis Accidents
 – Beyond Design Basis Accidents
 – Safety Systems
 – Emergency Safeguards Systems
 – Containment
Key Safety Measures

- Prevention
 - Proper Design and Training
- Protection
 - Monitoring and Control Systems
 - Active shutdown and cooling systems
- Mitigation – limit consequences
 - Engineered Safety Systems

Called Defense in Depth Approach
Energy Sources

- Stored Energy in Fuel, Steam and Structures
- Energy from nuclear transients
- Decay Heat
- Chemical Reactions
- External events – seismic, tornadoes, hurricanes, etc.
Mission - Remove Heat

• Prevent fuel cladding failure or core melting
 – Install systems to do this under many transient and accident conditions

• If unsuccessful, keep radioactive materials in the containment
 – Assure containment function is maintained and not breached by overpressure or missiles

• If unsuccessful, limit releases

• If unsuccessful, implement emergency plan
Design Basis Accidents

- Overcooling
- Undercooling
- Overfilling
- Loss of Flow
- Loss of Coolant
- Reactivity
- Anticipated Transients without Scram
- Spent fuel or handling events
- External Events
TABLE 13-1

Properties of Potentially Energetic Chemical Reactions of Interest in Nuclear Reactor Safety

<table>
<thead>
<tr>
<th>Reactant</th>
<th>Temperature (°C)</th>
<th>Oxide(s) formed</th>
<th>Heat of reaction‡ with:</th>
<th>Hydrogen produced with water (l/kg R)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oxygen (kcal/kg R)</td>
<td>Water (kcal/kg R)</td>
</tr>
<tr>
<td>Zr (liq.)</td>
<td>1852⁸</td>
<td>ZrO<sub>2</sub></td>
<td>-2883</td>
<td>-1560</td>
</tr>
<tr>
<td>SS (liq.)</td>
<td>1370⁸</td>
<td>FeO, Cr₂O₃, NiO</td>
<td>-1330 to -1430</td>
<td>-144 to -253</td>
</tr>
<tr>
<td>Na (solid)</td>
<td>25</td>
<td>Na₂O</td>
<td>-2162</td>
<td></td>
</tr>
<tr>
<td>Na (solid)</td>
<td>25</td>
<td>NaOH</td>
<td>-</td>
<td>-1466</td>
</tr>
<tr>
<td>C (solid)</td>
<td>1000</td>
<td>CO</td>
<td>-2267</td>
<td>+2700</td>
</tr>
<tr>
<td>C (solid)</td>
<td>1000</td>
<td>CO₂</td>
<td>-7867</td>
<td>+2067</td>
</tr>
<tr>
<td>H₂ (gas)</td>
<td>1000</td>
<td>H₂O</td>
<td>-29,560</td>
<td></td>
</tr>
</tbody>
</table>

‡ Positive values indicate energy that must be added to initiate an endoergic reaction; negative values indicate energy released by exoergic reactions.

⁸ Melting point.

Courtesy of MIT Press. Used with permission.
Pressurized Water Reactor Schematic

Concrete and Steel Containment

Primary Concrete Shield

Pressurizer

Primary Vessel

Control Rods

Reactor Core

Primary Coolant Pump

Steam Generator

Steam to Turbine

6.9 MPa

285°C

Turbine

Turbine Bypass

Electric Generator

Condenser

-40°C

-15°C

Cooling Tower

Turbine Bypass

High-Pressure Heaters

Low-Pressure Heaters

Feed Pump

Condensate Pump

Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
Specific Design Basis Accidents

- Steam line break
- Loss of Flow
- Loss of heat sink
- Steam generator tube(s) rupture
- Control rod ejection or rapid withdrawal
- Anticipated Transients without Scram
- Pressurized thermal shock
- Loss of coolant
 - Double ended guillotine break
 - Small Break
Typical PWR

FIGURE 14.2

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
Severe Accidents

• Beyond Design Basis
 – Successive failures of the engineering safety systems
 – Looking for cliff edge effects that may need to be addressed if consequences are severe and scenario is plausible.
 – Core Melt scenarios - vaporization
 • Steam explosion
 • Hydrogen explosion
 • Fission product inventory for release
Fission Products for Release

Table 13-2

<table>
<thead>
<tr>
<th>Fission products</th>
<th>Gap</th>
<th>Meltdown</th>
<th>Vaporization†</th>
<th>Steam Explosion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noble gases (Kr, Xe)</td>
<td>3.0</td>
<td>90</td>
<td>100</td>
<td>90 (X)(Y)</td>
</tr>
<tr>
<td>Halogens (I, Br)</td>
<td>1.7</td>
<td>90</td>
<td>100</td>
<td>90 (X)(Y)</td>
</tr>
<tr>
<td>Alkali metals (Cs, Rb)</td>
<td>5</td>
<td>81</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td>Te, Se, Rb</td>
<td>10^{-2}</td>
<td>15</td>
<td>100</td>
<td>60 (X)(Y)</td>
</tr>
<tr>
<td>Alkaline earths (Sr, Ba)</td>
<td>10^{-4}</td>
<td>10</td>
<td>11</td>
<td>—</td>
</tr>
<tr>
<td>Noble metals (Ru, Mo)</td>
<td>—</td>
<td>3</td>
<td>8</td>
<td>90 (X)(Y)</td>
</tr>
<tr>
<td>Rare earths (La, Sm, Pu) & refractories (Zr, Nb)</td>
<td>—</td>
<td>0.3</td>
<td>1.3</td>
<td>—</td>
</tr>
</tbody>
</table>

†Adapted from WASH-1400 (1975).

‡Exponential loss over 2 h with a half-time of 30 min. If a steam explosion occurs first, only the core fraction not involved in the explosion can experience vaporization.

$X =$ fraction of core involved; $Y =$ fraction of inventory remaining for release.
FIGURE 13-1
Loss-of-coolant accident (LOCA) sequences for light-water reactors. (Adapted from A. Sesonske, Nuclear Power Plant Design Analysis, TID-26241, 1973)
Engineered Safety Systems

Figure 14-1
Conceptual engineered safety systems for LWRs. (Adapted from WASH-1400, 1975.)
PWR Engineered Safety Systems

FIGURE 14-2

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
PWR Containment

![Diagram of PWR Containment](image)

Figure 14-4
Representative PWR containment. (From NUREG-1150, 1989.)
Containment Pressure Response

FIGURE 14-5
Containment pressure response for a PWR to a design-bases LOCA with assumed safety system failures.
(Adapted from WASH-1400, 1975.)
FIGURE 14-6

Figures © Hemisphere. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
Early BWR Containment Design
Later Version of BWR Containment
Containment Leakage

• Function of event and chemistry in building
• Driven by containment pressure
• Source terms
 – Noble gases – not captured
 – Elemental iodine – reactive and plated out
 – Organic iodides – not chemically reactive
 – Particulates and aerosols – heavy settle out
• What is not chemically reacted in containment, plated out or settled out is available for release.
Reading and Homework Assignment

1. Read Knief Chapter 13
