Resonance Theory
Basics

• Deals with the description of nucleus-nucleus interaction and aims at the prediction of the experimental structure of cross-sections

• Interaction model which treats the nucleus as a black box
 – Potential is unknown so models cannot predict accurately
 – Only care at what can be observed before and after a collision
R-matrix theory

- Introduced by Wigner and Eisenbud (1947)
- Requires no information about internal structure of the nucleus
- It is mathematically rigorous
 - Usually approximated
 - Most physical and appropriate of resonance framework
- Cross-sections are parametrized in terms of
 - Interaction radii & boundary condition
 - Resonance energy & widths
 - Quantum number (angular momentum, spin, …)
Why bother?

• Couldn’t we just use the measured data?
 – Too much information, too little understanding
 • x.s. vs energy would requires 100,000’s of experimental points
 • Angular distributions would require even more
 – Need for extrapolation
 • Different energies
 • Temperature changes
 • Geometry considerations (self-shielding, …)
 • Unstable or rare nuclides
R-matrix theory Assumptions

- Applicability of non-relativistic quantum mechanics
- Unimportance of processes where more than two product nuclei are formed
- Unimportance of all processes of creation or destruction
- Existence of a finite radial distance beyond which no nuclear interaction occurs

- Based on the notion that we can describe accurately what’s far enough from the compound nucleus but not what’s inside
Definition

• R-matrix is called a channel-channel matrix

• Channel
 – Designates a possible pair of nucleus and particle and the spin of the pair
 – Incoming channel (c)
 – Outgoing channel (c’)
 – Defined by pair of particles, mass, charge, spin
 • Many possible channels exist
Outside $r > a$ there is no interaction (except Coulomb).

Some channels can be both incident and exit. Others are exit only (e.g., fission fragments).

Inside $r > a$ we do not know what happens.
• Incoming channel (c)
 – We can control the incoming channel by the way we set up the experiment
 • Neutron energy
 • Target

• Outgoing channel (c’)
 – We can observe the outgoing channel with precise measurement
Total spin of the channel

- **spin quantum numbers**
 - (Note unprimed \(\Rightarrow \) incident, primed \(\Rightarrow \) exit):
 - \(i = \) intrinsic spin of incident particle = \(\frac{1}{2} \) for neutron \(+1 \) for neutron
 - \(I = \) spin of target nuclide = integer or \(\frac{1}{2} \) -integer \(\pi \)
 - \(l = \) relative orbital angular momentum (s, p, d, f, ...) \((l = 0, 1, 2, 3, \ldots) \)
 - \(s = \) channel spin \(\vec{s} = \vec{l} + \vec{i} \) \((+1) \ (\pi) \) \((-1)^l \)
 - \(J = \) total spin for channel \(\vec{J} = \vec{s} + \vec{l} \) \((+1) \ (\pi) \ (1)^l \)

- Required: conservation of spin and parity
 - (spin of incident channel = \(J^\pi = J' \ ^\pi' \) = spin of exit channel)
Angular momentum addition rules
(for those unfamiliar with vector algebra)

If vector spin \(\vec{a} \) is given by
\[
\vec{a} = \vec{b} + \vec{c}
\]
then \(a \) (the magnitude of \(\vec{a} \)) is within the limits
\[
|b - c| \leq a \leq b + c
\]

and \(a \) is either integer

(if \(b \) and \(c \) are both integer or both half-integer)

or half-integer

(if one of \(b \) and \(c \) is integer and the other half-integer)
Table shows angular momentum summations for 0, 1/2, 1, 3/2, and 2

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>c</td>
<td>$a = b + c$</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1/2</td>
<td>1/2</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3/2</td>
<td>3/2</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>1/2</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>1</td>
<td>1/2,3/2</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>3/2</td>
<td>1,2</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>2</td>
<td>3/2,5/2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0,1,2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3/2</td>
<td>1/2,3/2,5/2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1,2,3</td>
<td></td>
</tr>
<tr>
<td>3/2</td>
<td>3/2</td>
<td>0,1,2,3</td>
<td></td>
</tr>
<tr>
<td>3/2</td>
<td>2</td>
<td>1/2,3/2,5/2,7/2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0,1,2,3,4</td>
<td></td>
</tr>
</tbody>
</table>
Cross-section

- In 22.101, you used the phase shift theory to determine an expression for the scattering cross-section
 - This expression can be defined in terms of the collision matrix U

$$\sigma = \left(\frac{\pi}{k^2} \right) \sin^2 \delta = \left(\frac{\pi}{k^2} \right) |1 - U| \ 2.$$

- Different relations between x.s and U exist for other interaction type
Goal of R-matrix

• Phase shift theory requires knowledge of the potential $V(r)$
 – Approximated by square well
• R-matrix theory builds a relationship between a matrix R that depends only on observable, measurable quantities and the collision matrix
 – Bypasses the need for the potential
 – Requires experimental data
• We will derive a simplistic case of a neutron interaction with no spin dependence
R-Matrix Derivation

• Start with the steady-state Schrödinger equation with a complex potential

\[
\left(-\frac{\hbar^2}{2m} \nabla^2 + V \right) \psi = E \psi
\]

– Eigenvalue problem

• The wavefunction is expressed in the form of partial waves

\[
\psi(r, \cos \theta) = \sum_{l=0}^{\infty} \frac{\phi_l(r)}{r} P_l(\cos \theta)
\]
• In radial geometry, the moment is a solution of the following equation

\[
\left\{ \frac{d^2}{dr^2} + \frac{2m}{\hbar^2} \left[E - V(r) - \frac{l(l+1)}{2mr^2} \right] \right\} \phi_l(E,r) = 0
\]

\((1) \)

• Additionally, the moment can be represented by an expansion in terms of the eigenvectors of the solution

\[
\phi_l(E,r) = \sum_{\lambda} A_{l\lambda} \phi_{l\lambda}(E,\lambda,r).
\]

– Eigenvectors are also solutions of the above equation
• Eigenvectors are also a solution of:

\[(2) \begin{align*}
\frac{d^2}{dr^2} + \frac{2m}{\hbar^2} \left[E_\lambda - V(r) - \frac{l(l+1)\hbar^2}{2mr^2} \right] \Phi_l(E_\lambda,r) &= 0.
\end{align*} \]

• Boundary conditions

 – Both equations must be finite at \(r = 0 \)

 – Logarithmic derivative at nuclear surface is taken to be constant (where \(B_l \) is real)

\[
\left. \frac{d\phi_l(E_\lambda,r)}{dr} \right|_{r=a} = a^{-1} B_l \Phi_l(E_\lambda,a),
\]
• The eigenvectors form a basis set, if normalized properly, they have the following property:

\[\int_{0}^{a} \phi_{l}(E_{\lambda}, r) \phi_{l}(E_{\lambda'}, r) \, dr = \delta_{\lambda \lambda'} . \]

– They form an orthonormal basis set

• From this condition, the expansion coefficients can be defined as:

\[A_{l\lambda} = \int_{0}^{a} \phi_{l}(E_{\lambda}, r) \phi_{l}(E, r) \, dr . \]
• Our goal is to eliminate the potential $V(r)$
 – Multiply eq (1) by the eigenvector and multiply eq (2) by the moment
 – Subtract resulting equations
 – Integrate between 0 and a
 – Result: Gives an expression for $\phi_{l}(E_{\lambda},r)\phi_{l}(E,r)$
 • Which can be used to find the expansion coefficients

$$A_{l\lambda} = \frac{\hbar^{2}}{2m}(E_{\lambda} - E)^{-1}\left[\phi_{l}(E_{\lambda},r)\frac{d\phi_{l}(E,r)}{dr} - \phi_{l}(E,r)\frac{d\phi_{l}(E_{\lambda},r)}{dr}\right]_{r=a}.$$
We can now find an expression for the moment at $r = a$

$$
\phi_i(E,a) = \frac{\hbar^2}{2ma} \sum_\lambda \left[\frac{\phi_i(E_\lambda,a) \phi_i(E_\lambda,a)}{E_\lambda - E} \right] \left[r \frac{d\phi_i(E,a)}{dr} - B_i \phi_i(E,r) \right]_{r=a}.
$$

Where we can extract a definition of the R-matrix

$$
R_i = \frac{\hbar^2}{2ma} \sum_\lambda \left[\frac{\phi_i(E_\lambda,a) \phi_i(E_\lambda,a)}{E_\lambda - E} \right]
$$

Or more commonly

$$
R_i = \sum_\lambda \gamma_{\lambda i} \gamma_{\lambda i}, \quad \gamma_{\lambda i} = \sqrt{\frac{\hbar^2}{2ma} \phi_i(E_\lambda,a)}.
$$
- $\gamma_{\lambda l}$ is the reduced width amplitude for level λ and angular momentum l
- λ is the resonance
- E_{λ} is the energy at the resonance peak
- $\gamma_{\lambda l}$'s and E_{λ}'s are unknown parameters and can be evaluated by observing measured cross-sections
 - E_{λ} is the energy value at the peak
 - $\gamma_{\lambda l}$ is a measure of the width of the resonance at a certain amplitude for the nuclei at rest
 - Related to the more common Γ through a matrix transform
 - Not easy to measure because of temperature effects (Doppler)
 - Usually inferred from the resonance integral
General Form

\[R_{cc'} = \sum_{\lambda} \frac{\gamma_{\lambda c} \gamma_{\lambda c'}}{E_{\lambda} - E} , \]

\[\gamma_{\lambda c} = \sqrt{\frac{\hbar^2}{2m_c a_c}} \phi_c(E_{\lambda}, a_c) . \]
Advantages/Disadvantages of R-matrix theory

- **Disadvantages**
 - Matrix inversion is always required
 - Channel radii and boundary condition appear arbitrary
 - Difficult to accommodate direct reactions (i.e. potential scattering)

- **Advantages**
 - Channel radii and boundary condition have natural definitions which makes them appealing
 - Reduced width concept has an appealing relation to nuclear spectroscopy
Boundary condition

• In the early days, there was much confusion in the choice of channel radii and boundary condition
 – This topic has been debated heavily over the last 40 years!
 – Early papers described their choice as arbitrary
 – Optical model has facilitated the choice of these parameters

• “Natural” choices exist
 – Described in more details in pdf R-matrix theory (2)
 – B_j must be kept real to preserve the nature of the eigenvalue problem
 – Choice of boundary condition is to set it equal to the shift function at some point in the energy interval of measurement.
 • Keep only real part of the logarithmic derivative of the outgoing wave
 – Matching radii usually selected based on square-well interaction
Relation with collision matrix

- We found an expression for the solution of the wavefunction that doesn’t depend on the potential
 - Depends on R-matrix
 - R-matrix depends on experimentally measured data
- Total wave function in region outside nuclear potential interaction can be expressed as a linear combination of the incoming and outgoing waves

\[\phi_i(r) = C_i \left[\phi_i^{inc}(r) - U_i \phi_i^{out}(r) \right] \quad \text{for } r \geq a \]
• From R-matrix analysis, we found

\[\phi_l(E,a) = \left[r \frac{d\phi_l(E_{\lambda},a)}{dr} - B_l \phi_l(E,r) \right]_{r=a} R_l, \]

• We can then find that

\[
U_l = \left(\frac{\phi_l^{inc}}{\phi_l^{out}} \right)_{r=a} \frac{1}{1 - \left(\frac{r}{\phi_l^{inc}} \frac{d\phi_l^{inc}}{dr} - B_l \right)_{r=a} R_l} \left(\frac{r}{\phi_l^{out}} \frac{d\phi_l^{out}}{dr} - B_l \right)_{r=a} R_l.
\]
• Defining

\[L_l^* = \left(\frac{r}{\phi_l^{out}} \frac{d\phi_l^{out}}{dr} \right)_{r=a} \]

\[L_l = \left(\frac{r}{\phi_l^{inc}} \frac{d\phi_l^{inc}}{dr} \right)_{r=a} \]

• We get

\[U_l = \left(\frac{\phi_l^{inc}}{\phi_l^{out}} \right)_{r=a} \frac{1 - (L_l^* - B_l)_{r=a}}{1 - (L_l - B_l)_{r=a}} R_l \]
General form

\[U = \rho^{1/2} \phi_{out}^{-1} [I - R(L - B)]^{-1} [I - R(\bar{L} - B)] \phi_{inc} \rho^{-1/2}. \]

- No approximation has been made
 - Exact representation between U and R
Level matrix

• The R-matrix is fairly small but fairly complex to built
• Wigner introduced a clearer representation called the A-matrix whose elements correspond to energy levels
 – A is much larger
 – But its parameters are clearly defined
 – Summation is over incoming channels

\[A_{\mu\lambda}^{-1} = (E_\lambda - E) \delta_{\mu\lambda} - \sum_c (\gamma_{\mu c} L_{0 c} \gamma_{\lambda c}) \]
A-matrix

\[(A^{-1}) = \begin{pmatrix}
E_1 + \Delta_1 - E - \frac{i}{2} \Gamma_1 & \Delta_{12} - \frac{i}{2} \Gamma_{12} & \Delta_{13} - \frac{i}{2} \Gamma_{13} & \cdots \\
\Delta_{12} - \frac{i}{2} \Gamma_{12} & E_2 + \Delta_2 - E - \frac{i}{2} \Gamma_2 & \Delta_{23} - \frac{i}{2} \Gamma_{23} & \cdots \\
\Delta_{13} - \frac{i}{2} \Gamma_{13} & \Delta_{23} - \frac{i}{2} \Gamma_{23} & E_3 + \Delta_3 - E - \frac{i}{2} \Gamma_3 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix}\]

- Very large
 - Corresponds to the total number of resonances
- Symmetric matrix
- Diagonal terms depend on each level independently
- Off-diagonal terms are mixed terms that introduce the influence of different levels on each other

\[U_{cc'} = e^{-i(\Phi_c + \Phi_{c'})} \left[\delta_{cc'} + 2i P_{c}^{1/2} \left(\sum_{\mu\lambda} \gamma_{\lambda c} A_{\lambda\mu} \gamma_{\mu c'} \right) P_{c'}^{1/2} \right].\]
Multi-level Breit Wigner

- Neglecting off-diagonal terms yields the Breit Wigner approximation
 - Analyzing a single level at a time yields the Single level Breit Wigner (SLBW) approximation
 - Works well if resonances are well spaced
 - Originally developed by Wigner based on an analogy to the dispersion of light
 - In some cases, off-diagonal terms matter

\[A_{\lambda \mu}^{-1} = (E_\lambda - E - \sum_c L_{0c} \gamma_{\lambda c}^2) \delta_{\lambda \mu} . \]

\[U_{cc'} = e^{-i(\phi_c + \phi_{c'} - \frac{\pi}{2})} \sum_\lambda \frac{\Gamma^{1/2}_{\lambda c} \Gamma^{1/2}_{\mu c'}}{E_\lambda - E - \frac{i}{2} \Gamma_\lambda} , \]
Reich Moore Formalism

- Current method of choice
 - Keeps most off-diagonal terms
 - Neglects impact of gamma channels

- Measurements have shown that fluctuations between gamma channels at different levels must be small

\[
\sum_c \gamma_{\lambda c} L_{0c} \gamma_{\mu c} = \sum_{c \in \gamma} \gamma_{\lambda c} L_{0c} \gamma_{\mu c} + \sum_{c \in \gamma} \gamma_{\lambda c} L_{0c} \gamma_{\mu c}, \quad \sum_{c \in \gamma} \gamma_{\lambda c} L_{0c} \gamma_{\mu c} \approx \delta_{\mu \lambda} \sum_{c \in \gamma} L_{0c} \gamma_{\lambda c}^2 .
\]

\[
A^{-1}_{\lambda \mu} = (E_\lambda - E + \Delta_{\lambda \gamma} - i \frac{\Gamma_{\lambda \gamma}}{2}) \delta_{\lambda \mu} + \sum_{c \in \gamma} \gamma_{\lambda c} L_{0c} \gamma_{\mu c} .
\]
• MLBW is more restrictive than Reich Moore
 – Poor treatment of multi-channel effects
• SLBW is more restrictive than MLBW
 – Can give negative cross-section values
Reich Moore vs SLBW
(U235 fission)

- Solid line : SLBW
- Dotted line : RM
Fe-56: RM, MLBW, SLBW

- Solid line: RM
- Dashed line: MLBW
- Dotted line: SLBW
22.106 Neutron Interactions and Applications
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.