Problem 1 (15%) – Sizing the shell of a spherical containment

i) The principal stresses for a thin spherical shell are:

\[
\sigma_r = \frac{-(p_i+p_o)}{2} \quad (1)
\]
\[
\sigma_\theta = \sigma_\phi = \frac{(p_i-p_o)R_c}{2t_c}
\]

where \(p_i=1.9 \text{ MPa}\) and \(p_o=0.1 \text{ MPa}\), \(R_c=12.5 \text{ m}\) and \(t_c\) is the shell thickness. Hook’s law yields:

\[
\varepsilon_\theta = \frac{u}{R_c} = \frac{1}{E} \left[\sigma_\theta - \nu (\sigma_\phi + \sigma_r) \right] \quad (2)
\]

where \(E = 184 \text{ GPa}\) and \(\nu = 0.33\). Substituting Eq. (1) in Eq. (2), setting \(u=1 \text{ cm}\) and solving for \(t_c\), one gets:

\[
t_c = R_c \left(1 - \nu \right) \frac{(p_i-p_o)}{[2E u/R_c - \nu (p_i+p_o)]} \approx 3.7 \text{ cm}
\]

Since \(R_c/t_c>10\), the thin shell assumption of accurate.

ii) The primary membrane general stress intensity for this case is:

\[
P_m = (\sigma_\theta - \sigma_r) \approx 102 \text{ MPa}
\]

\(\sigma_\theta\) and \(\sigma_r\) were calculated from Eq. (1) (thin shell assumption still applies), for \(t_c=8 \text{ cm}\). The ASME limit is \(S_m=110 \text{ MPa}\). Therefore the margin is \(S_m/P_m \approx 1.075\), or 7.5%.

Problem 2 (25%) – Reduction of containment pressure after LOCA

Conservation of energy for the containment:

\[
\frac{\partial E_{cv}}{\partial t} = \dot{Q}_{\text{decay}} - \dot{Q}_{\text{ex}} \quad (3)
\]

where \(\dot{Q}_{\text{decay}} = \dot{Q}_0 0.066t^{-0.2}\), \(\dot{Q}_0 = 1000 \text{ MW}\), and \(\dot{Q}_{\text{ex}} = 20 \text{ MW}\). Integrating Eq. (3):
\[E_2 - E_1 = \dot{Q}_0 \frac{0.066}{0.8} t_2^{0.8} - \dot{Q}_{ss} t_2 \]

(4)

Expanding the left-hand side, one gets:

\[
M_a c_{v,a}(T_2 - T_1) + M_w \{ [u_f(T_2)(1-x_2) + u_g(T_2)x_2] - [u_f(T_1)(1-x_1) + u_g(T_1)x_1] \} = \dot{Q}_0 \frac{0.066}{0.8} t_2^{0.8} - \dot{Q}_{ss} t_2
\]

(5)

where \(M_a, c_{v,a}, T_1, M_w\) and \(x_1\) are all known from the problem statement. The following equation holds for the control volume:

\[
V_{tot} = M_w [v_f(T_2)(1-x_2) + v_g(T_2)x_2]
\]

(6)

The containment pressure at \(t_2\), \(P_2=0.5 \text{ MPa}\), is the sum of the partial pressures of water and air:

\[
P_2 = P_{sat}(T_2) + \frac{M_a R T_2}{V_{tot} - M_w (1-x_2) v_f(T_2)}
\]

(7)

Therefore, Eqs. (5), (6) and (7) are 3 equations in the only unknowns \(t_2\), \(T_2\) and \(x_2\). Actually solving the equations, one finds \(t_2 \approx 14300 \text{ s}\), \(T_2 \approx 140.4 \degree \text{C}\) and \(x_2 \approx 0.035\).

Problem 3 (45%) – Superheated Boiling Water Reactor

i) T-s diagram:

![T-s Diagram](image)

ii) Taking the whole system as a control volume, the conservation of energy yields:

\[0 = \dot{Q} + \dot{m}_{FW} (h_{FW} - h_{sup}) \quad \Rightarrow \quad \dot{m}_{FW} = \dot{Q} / (h_{sup} - h_{FW}) \]

(8)
where $\dot{Q}=1000$ MW and h_{FW} and h_{sup} are the specific enthalpy of the feedwater and superheated steam, respectively. The difference $h_{sup}-h_{FW}$ can be expressed as follows:

$$
 h_{sup} - h_{FW} = c_{p,g} (T_{sup} - T_{sat}) + h_{fg} + c_{p,f} (T_{sat} - T_{FW}) \approx 2936 \text{ kJ/kg}
$$

where $T_{FW}=230^\circ\text{C}$ and $T_{sup}=510^\circ\text{C}$. Therefore, Eq. (8) yields $\dot{m}_{FW} \approx 340.6$ kg/s.

iii) The acceleration pressure drop is

$$
\Delta P_{acc} = G^2 \left[\frac{1}{\rho^+_{m,\text{out}}} - \frac{1}{\rho^+_{m,\text{in}}} \right]
$$

where $G = \dot{m}/A \approx 1800$ kg/m2s, $\dot{m} = 2270$ kg/s, $A = 1.26$ m2 and

$$
\rho^+_{m} \equiv \frac{1}{x^2 + \frac{(1-x)^2}{\alpha \rho_g (1-\alpha) \rho_f}}
$$

Since at the inlet there is only the liquid phase, it is $\rho^+_{m,\text{in}} = \rho_f$, while at the outlet $x=0.15$ and the void fraction can be found from the fundamental relation of two-phase flow:

$$
\alpha = \frac{1}{1 + \frac{\rho_g}{\rho_f} \cdot \frac{1-x}{x} \cdot S} \approx 0.69
$$

where $S = 2$, per the problem statement. Then it is $\rho^+_{m,\text{out}} \approx 240.3$ kg/m3 from Eq. (10), and finally Eq. (9) yields $\Delta P_{acc} \approx 9,235$ Pa

iv) Since the heat flux is axially constant, dryout would occur at the outlet (Point B). The critical quality at the outlet is found to be $x_{cr} \approx 0.344$ from the CISE-4 correlation with $L_b=3$ m, and the coefficients $a=0.5987$ and $b=2.2255$, calculated for $P=6$ MPa, $P_c=22.1$ MPa, $G=1800$ kg/m2s>$G^* = 1211$ kg/m2s, $D_c=0.02$ m.

Then the critical power of the $A \rightarrow B$ channels is $\dot{Q}_{cr,AB} = \dot{m} [c_{p,f} (T_{sat} - T_A) + x_{cr} h_{fg}] \approx 1311$ MW, where $T_A=268^\circ\text{C}$. So, the $CPR = \frac{\dot{Q}_{cr,AB}}{\dot{Q}_{AB}} \approx 2.12$, with $\dot{Q}_{AB} = \dot{m} [c_{p,f} (T_{sat} - T_A) + x_B h_{fg}] \approx 618$ MW being the operating power of the $A \rightarrow B$ channels, where $x_B=0.15$.

Problem 4 (15%) – Thermodynamic analysis of a new power cycle

To be thermodynamically feasible, the cycle must not violate the 1st and 2nd law of thermodynamics.

J. Buongiorno, 2009
Taking the whole power cycle as the control volume, the conservation of energy (1st law) becomes:

\[0 = \dot{Q} - \dot{W} + \dot{m}_{\text{sea}} (h_{\text{in}} - h_{\text{out}}) \] \hspace{0.5cm} (11)

where steady-state was assumed and \(\dot{Q} = 1000 \text{ MW}, \dot{W} = 400 \text{ MW}, \dot{m}_{\text{sea}} = 15000 \text{ kg/s}, \)

\((h_{\text{in}} - h_{\text{out}}) = c_{\text{sea}} (T_{\text{in}} - T_{\text{out}}) \), \(c_{\text{sea}} = 4000 \text{ J/kg°C} \) and \(T_{\text{in}} = 288 \text{ K (15°C)} \) and \(T_{\text{out}} = 298 \text{ K (25°C)} \).

Using these numbers, Eq. 11 is identically satisfied. Therefore, the cycle does not violate the 1st law.

With the same choice of control volume, the 2nd law becomes:

\[0 = \frac{\dot{Q}}{T_r} + \dot{m}_{\text{sea}} (s_{\text{in}} - s_{\text{out}}) + \dot{S}_{\text{gen}} \Rightarrow \dot{S}_{\text{gen}} = \dot{m}_{\text{sea}} (s_{\text{out}} - s_{\text{in}}) - \frac{\dot{Q}}{T_r} \] \hspace{0.5cm} (12)

where \(T_r = 723 \text{ K (450°C)} \) and \(s_{\text{out}} - s_{\text{in}} = c_{\text{sea}} \ln \frac{T_{\text{out}}}{T_{\text{in}}} \). Then Eq. 12 yields \(\dot{S}_{\text{gen}} = 665 \text{ kW/K} > 0 \), therefore the cycle does not violate the 2nd law either.

J. Buongiorno, 2009