FAILURE CAUSES

Overload
Fatigue Cracking
Corrosion-assisted Cracking
Creep
Wear
Chemical Reaction

PREVENTIVE MAINTENANCE
(avoiding component failure should reduce λ)

Periodic Care (e.g., changing oil)
Testing and Response
Replacement and Repair Before Failure
Monitoring and Response Repair, Replacement, Realignment
REPAIR

Take component out of service for repair/replacement

Fix What’s Broken
 Reactive
 Prepared
 Parts available { Stored nearby
 Available via rapid delivery
 Teams trained
 Work planned { Quick execution
 Accurate feedback
 Tools available

Replace What’s Broken

 Design for quick replacement { Modules
 Good work space
 Store components prepared for quick replacement
MAINTENANCE STRATEGIES*

<table>
<thead>
<tr>
<th>Maintenance Policy</th>
<th>Corrective Maintenance</th>
<th>Preventive Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run to failure</td>
<td>Replace upon failure</td>
<td>None</td>
</tr>
<tr>
<td>Age-dependent replacement</td>
<td>Replace upon failure</td>
<td>Replacement after interval, τ, in service</td>
</tr>
<tr>
<td>"Block" replacement</td>
<td>Replace upon failure</td>
<td>Replace at fixed times, $k\tau$; $k = 1, 2, ...$</td>
</tr>
<tr>
<td>Minimal repair with "Block" replacement</td>
<td>Repair minimally upon failure</td>
<td>Replace at fixed times, $k\tau$; $k = 1, 2, ...$</td>
</tr>
<tr>
<td>Periodic testing (for latent defect detection)</td>
<td>Replace or repair upon test failure</td>
<td>Replace at fixed times, $k\tau$; $k = 1, 2, ...$</td>
</tr>
<tr>
<td>Monitoring-based repair or replacement</td>
<td>Replace or repair upon $P(\lambda dt) > P^*$ or upon failure</td>
<td>None</td>
</tr>
</tbody>
</table>