Fast Reactor Materials Issues & Their Implications for Design

Professor R. G. Ballinger

Department of Nuclear Science & Engineering
Department of Materials Science and Engineering

Massachusetts Institute of Technology
Extension of LWR Conditions to FR Conditions

- **Key Differences**
 - Flux Distribution
 - (Energy)
 - Total Dose
 - LWR/Thermal~ 50 dpa max, FR > 100 dpa
 - Temperature
 - 300°C (>300 for SCW) LWR/Thermal, FR > 500°C
 - Fuel Type
 - UO$_2$ (MOX), UC/UCO LWR/Thermal, UC, UN, (Cermet, Cer-Cer, etc) FR
 - Exposure (Burnup)
 - Cladding Type
 - Zr Alloy LWR, SS, Fe-Based, Ceramic (SiC/SiC), etc. FR
 - Dose
 - Operating Environment
 - LWR/Thermal-Water, He, SCW, FR SC-CO$_2$, He,
Design Implications

• Flux Distribution
 – Radiation Damage
 » Temperature, Energy Distribution
• Total Dose
 – Radiation Effects
 » Swelling, He Embrittlement, Creep
• Temperature
 – Creep, Creep-Fatigue, Microstructural Stability
• Fuel Type
 – Fast Reactor “legacy” Data
 – Swelling, FGR
• Cladding Type
 – Fluence
• Operating Environment
 – Corrosion
 – Stability (Microstructural)