Design Goals and Interrelationship among Core Design Parameters

Course 22.39, Lecture 2
9/11/06
Professor Neil Todreas
Major Design Choices

<table>
<thead>
<tr>
<th></th>
<th>PWR</th>
<th>GFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coolant</td>
<td>Water</td>
<td>He or SCO₂</td>
</tr>
<tr>
<td>Neutron Spectrum Fuel</td>
<td>Thermal</td>
<td>Fast</td>
</tr>
<tr>
<td>Fuel</td>
<td>UO₂</td>
<td>Dispersion in Matrix CERCER (U-TRU) C/SiC</td>
</tr>
<tr>
<td>Decay Heat Removal System</td>
<td>• Active (Gen II) • Passive (AP1000 and ESBWR)</td>
<td>Active or Passive</td>
</tr>
<tr>
<td>Power Conversion Cycle</td>
<td>Rankine</td>
<td>Brayton with Supercritical CO₂ Or Helium</td>
</tr>
</tbody>
</table>
Principle PWR Design Challenges

#1 Reduction of Capital Cost

Design Approaches:

• Constructability
 ➢ Modularity, Informatics, Construction Techniques

• Design Approach
 ➢ Safety by Natural Phenomena
 ➢ Unique Approaches
 ◆ Filtered, Vented Containment
 ◆ Containment in Cooling Tower
 ◆ Steam Generators outside Containment
 ◆ Rapid Refueling Technology
#2 Reduction in O&M Cost

Design and Management Objectives:
- Reduce Operator Burden
- Reduce Plant Operating Staff
#3 Reduce Spent Fuel Inventory (holding fuel cycle cost level)

Design Approaches

- Increase Fuel Burnup
- Increase Plant Thermal Efficiency
- Separation of Actinides
- Reprocessing of Actinides
Typical Nuclear Plant Operating History
Time Periods in an Operating Cycle

<table>
<thead>
<tr>
<th>Operation</th>
<th>Outages within Operator Control</th>
<th>Outages outside Operator Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>At Power</td>
<td>Planned Outages (PO) T_{PO}</td>
<td>Idle Outages (I) T_I</td>
</tr>
<tr>
<td>Effective Full Power Period, EFPP</td>
<td>Unplanned Outages (UO) T_{UO}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Outage Extension (EO) T_{EO}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Forced Outage (FO) T_{FO}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Refueling Outage (RO) T_{RO}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maintenance Outage (MO) T_{MO}</td>
<td></td>
</tr>
</tbody>
</table>

Definitions
- **Unplanned Outages (UO)** (T_{UO})
- **Planned Outages (PO)** (T_{PO})
- **Forced Outage (FO)** (T_{FO})
- **Outage Extension (EO)** (T_{EO})
- **Refueling Outage (RO)** (T_{RO})
- **Maintenance Outage (MO)** (T_{MO})
- **Idle Outages (I)** (T_I)
Plant Operating Characteristics

Source: 22.39 “Class Note 1”
Effect of Cycle Length on Plant Operating Factors (assuming a 30 day refueling outage length, T_{RO}) and 30 Day Idle Time Period, T_I, outside the Plant Operator’s Control

Source: 22.39 “Class Note I”
Equivalent Annulus Representation of the pin cell geometry and the inverted or matrix cell geometry

Source: 22.39 “Class Note 1”