The Levelized Cost of Production and the Annual Carrying Charge Factor

First, define levelized cash flows:

1. **Discrete cash flows**

Consider the non-uniform cash flow series:

We can define an 'equivalent levelized' cash flow, A_L, such that the uniform series PW is equal to the PW of the actual series:

$$\sum_{n=1}^{N} A_{L}(P/F,i,n) = \sum_{n=1}^{N} A_{n}(P/F,i,n)$$

$$A_L = \frac{\sum_{n=1}^{N} A_{n}(P/F,i,n)}{\sum_{n=1}^{N} (P/F,i,n)}$$
2. Continuous cash flow rate

\[A(t) \]

We obtain, by analogy,

\[
\bar{A}_L = \frac{\int_0^T A_0 e^{yt} dt}{\int_0^T e^{yt} dt}
\]

For the special case of an exponential increase in \(\bar{A} \)

\[
\bar{A}(t) = A_0 e^{yt}
\]

And expanding the exponentials as Taylor series and retaining terms through second order, yielding, to first order,

\[
\bar{A}_L = \frac{A_0}{r} \left[1 + \frac{r}{y} \left(1 - e^{rt} \right) \right]
\]
Levelized Unit Cost of Product

The lifetime levelized cost, the constant cost that is equivalent in a present worth sense to the relevant time-varying cost, is a useful benchmark for comparisons of facilities which might otherwise be difficult to compare (e.g., windmills versus gas turbines.)

Example – manufacturing facility

Consider a factory with initial investment cost \(I_0 \) at \(t=0 \), which operates for \(N \) years after which it is salvaged at \(I_N \).

Suppose that during this period the factory produces \(Q_j \) units per year at an annual operating cost of \(M_j \) dollars per year.

What is the levelized cost of a unit of product – i.e., the uniform cost which, if recovered on every unit produced, will provide lifetime revenues just sufficient to cover all capital and operating costs?

Case I: No Taxes

Write the levelized unit cost, \(c \), as the sum of operating and capital components:
\[c = c_m + c_l \]

1. Operating cost component, \(c_m \)

\[\sum_{j=1}^{N} c_m Q_j(P/F,i,j) = \sum_{j=1}^{N} M_j(P/F,i,j) \]

\[c_m = \frac{\sum_{j=1}^{N} M_j(P/F,i,j)}{\sum_{j=1}^{N} Q_j(P/F,i,j)} \]

2. Capital cost component, \(c_l \)
\[\sum_{j=1}^{N} l_n (1+i)^{-j} = \sum_{j=1}^{N} c_i Q_j (P/F, i, j) \quad (1) \]

Define: Average (levelized) production rate \(Q_L \)

\[\sum_{j=1}^{N} Q_L (P/F, i, j) = \sum_{j=1}^{N} Q_j (P/F, i, j) \]

\[Q_L = \frac{\sum_{j=1}^{N} Q_j (P/F, i, j)}{(P/A, i, N)} \]

and substituting for \(Q_L \) in (1)

\[c_i = \frac{1}{Q_L (P/A, i, N)} \left[\sum_{j=1}^{N} l_n (P/F, i, N) \right] \]

\[= \frac{1}{Q_L} \left[l_0 (A/P, i, N) \sum_{j=1}^{N} l_n (A/F, i, N) \right] \]

i.e.,

levelized unit cost = \(\frac{1}{\text{levelized production rate}} \left[l_0 \text{ capital recovery factor} \sum_{j=1}^{N} l_n \text{ sinking fund fac} \right] \)

Case II: With Taxes

\[Q_c \]

\[T_j \]

\[M_j \]
As before, write $c = c_m + c_l$

Next, transform the cash flow problem into an equivalent tax-implicit problem

\[Q_j(c_l + c_M)(1 - \theta) \]

\[[D_j] \]

\[I_N \]

\[M_j(1 - \theta) \]

\[I_o \]

And, decomposing into capital and operating components,

\[C_i Q_j(1 - \theta) \]

\[[D_j] \]

\[I_N \]

\[c_M Q_j(1 - \theta) \]

\[M_j(1 - \theta) \]

\[I_o \]

Then solve separately for c_l and c_M.
a. \(c_M \)

\[
(1 - \sum_{j=1}^{N} c_M Q_j(P/F,x,j)) = (1 - \sum_{j=1}^{N} M_j(P/F,x,j))
\]

\[
c_M = \frac{\sum_{j=1}^{N} M_j(P/F,x,j)}{\sum_{j=1}^{N} Q_j(P/F,x,j)}
\]

b. \(c_I \)

\[
(1 - \sum_{j=1}^{N} c_I Q_j(P/F,x,j)) = I_o - I_N \frac{(I_o - I_N)(P/A,x,N)}{N - D_j(j-1)}
\]

For the case of straight line depreciation:

\[
D_j = \frac{I_o - I_N}{N}
\]

and

\[
c_i = \frac{1 - \sum_{j=1}^{N} \frac{(I_o - I_N)(P/A,x,N)}{N - D_j(j-1)}}{\sum_{j=1}^{N} Q_j(P/F,x,j)}
\]

as before, define a levelized production rate, \(Q_L \)

\[
Q_L = \frac{\sum_{j=1}^{N} Q_j(P/F,x,j)}{\sum_{j=1}^{N} (P/F,x,j)} = \frac{\sum_{j=1}^{N} Q_j(P/F,x,j)}{(P/A,x,N)}
\]

And substituting in (2) above
\[c_i = \frac{1}{(A/P, x, N) I_o (A/F, x, N) N I_o / I_o} \]

\[= \frac{I_o}{Q_L} \frac{1}{(A/P, x, N) N I_o / I_o (A/F, x, N)} \]

\[(A/P, x, N) = \frac{x(1+x)^N}{(1+x)^N x} x \]

\[(A/F, x, N) = \frac{x}{(1+x)^N x} 0 \]

\[= \frac{x}{1} \]

This is a good approximation for large \(N \).

Notes

1. \(I_o \) is the PW of the initial investment at the start of operation.

2. In a tax-free environment \((t=0)\), the annual carrying charge factor reduces to the capital recovery factor, adjusted for NSV.

3. In the limit of large \(N \) \((N \rightarrow \infty)\)

4. The form of the annual capital charge factor in equation (3) applies to the case of straight-line depreciation. Equivalent expressions can be derived for other depreciation schedules.