We begin with multiplication of a vector by a scalar.

When you multiply a vector, \(A \), by a scalar, this multiplicative factor just rescales the magnitude or the length of the vector.

Let us look at the vector 2 times \(A \). This is in the same direction as the vector \(A \), but is twice as long.

This is vector \(B \). A vector is defined by its magnitude and direction.

So this vector \(B \) is the same anywhere in space, including at the origin.

If I want minus 0.5 times \(B \), this vector is in the opposite direction of \(B \) and is half the length.

Now let's look at vector addition.

Here's a vector \(A \). Here is \(B \). How do we add them graphically?

We slide the tail of \(B \) to the head of \(A \).

And their sum is a vector drawn from the tail of \(A \) to the head of \(B \). I could have also added \(A \) to \(B \) by sliding the tail of \(A \) to the head of \(B \).

You can see that this makes a parallelogram, and the sum, vector \(C \), is just the diagonal of this parallelogram.

Subtraction can be thought of as just multiplication and addition.

If I have \(C \) is equal to \(A \) minus \(B \), I just need to add \(A \) to the vector minus \(B \). Minus \(B \) is negative 1 times \(B \), which is this vector here.

Now I only have to add \(A \) to minus \(B \).

Let's do another example.

Here are my vectors \(A \) and \(B \) do not start at the origin.

But since vectors are the same anywhere in space, I can go through the process here.

I want \(A \) minus \(B \). So I first multiply \(B \) by minus 1 to find minus \(B \). And then I move the tail of minus \(B \) to the head of \(A \) and add the two like this.