We want to relate the small length, area, or volume element to \(\Delta m \), the amount of mass contained within.

In one dimension, this relation is called the linear density, \(\lambda \), which is \(\Delta m / \Delta l \).

For a uniform rod of length \(L \) and total mass \(M \), \(\lambda \) is equal to \(M / L \). In two dimensions, the area element contains an amount of mass \(\sigma \times \Delta A \), where \(\sigma \) has units of mass over area.

Finally, in three dimensions, the volume density \(\rho \) connects the small mass, \(\Delta m \), to the volume, \(\Delta V \).