Class 24: Outline

Hour 1:
Inductance & LR Circuits

Hour 2:
Energy in Inductors
Last Time:
Faraday’s Law
Mutual Inductance
Faraday’s Law of Induction

$$\mathcal{E} = -N \frac{d\Phi_B}{dt}$$

Changing magnetic flux *induces* an EMF

Lenz: Induction *opposes* change
A current I_2 in coil 2, induces some magnetic flux Φ_{12} in coil 1. We define the flux in terms of a “mutual inductance” M_{12}:

$$N_1 \Phi_{12} \equiv M_{12} I_2$$

$$\Rightarrow M_{12} = \frac{N_1 \Phi_{12}}{I_2}$$

$$\mathcal{E}_{12} \equiv -M \frac{dI_2}{dt}$$

You need AC currents!
Demonstration: Remote Speaker
This Time:
Self Inductance
Self Inductance

What if we forget about coil 2 and ask about putting current into coil 1? There is “self flux”:

\[N_1 \Phi_{11} \equiv M_{11} I_1 \equiv LI \]

\[\rightarrow L = \frac{N \Phi}{I} \]

\[\mathcal{E} \equiv -L \frac{dI}{dt} \]
Calculating Self Inductance

1. Assume a current I is flowing in your device
2. Calculate the B field due to that I
3. Calculate the flux due to that B field
4. Calculate the self inductance (divide out I)

$$L = \frac{N\Phi}{I}$$

Unit: Henry

$$1 \text{ H} = 1 \frac{V \cdot \text{s}}{\text{A}}$$
Group Problem: Solenoid

Calculate the self-inductance L of a solenoid (n turns per meter, length ℓ, radius R)

REMEMBER
1. Assume a current I is flowing in your device
2. Calculate the B field due to that I
3. Calculate the flux due to that B field
4. Calculate the self inductance (divide out I)

$$L = \frac{N\Phi}{I}$$
Inductor Behavior

\[\mathcal{E} = -L \frac{dI}{dt} \]

Inductor with constant current does nothing
Back EMF \(\mathcal{E} = -L \frac{dI}{dt} \)

Lenz's law emf

\[
\frac{dI}{dt} > 0, \quad \mathcal{E}_L < 0
\]

\[
\frac{dI}{dt} < 0, \quad \mathcal{E}_L > 0
\]
Inductors in Circuits

Inductor: Circuit element which exhibits self-inductance

Symbol:

When traveling in direction of current:

\[\mathcal{E} = -L \frac{dI}{dt} \]

Inductors hate change, like steady state
They are the opposite of capacitors!
PRS Question: Closing a Switch
\[
\sum V_i = \mathcal{E} - IR - L \frac{dI}{dt} = 0
\]
LR Circuit

\[\varepsilon - IR - L \frac{dI}{dt} = 0 \quad \Rightarrow \quad \frac{L}{R} \frac{dI}{dt} = - \left(I - \frac{\varepsilon}{R} \right) \]

Solution to this equation when switch is closed at \(t = 0 \):

\[I(t) = \frac{\varepsilon}{R} \left(1 - e^{-t/\tau} \right) \]

\[\tau = \frac{L}{R} : LR \text{ time constant} \]
LR Circuit

$t=0^+$: Current is trying to change. Inductor works as hard as it needs to to stop it.

$t=\infty$: Current is steady. Inductor does nothing.
t=0⁺: Current is trying to change. Inductor works as hard as it needs to to stop it.

\(t=\infty \): Current is steady. Inductor does nothing.
General Comment: LR/RC

All Quantities Either:

\[\tau = \frac{L}{R} \text{ or } \tau = RC \]

\[\text{Value}(t) = \text{Value}_{\text{Final}} \left(1 - e^{-t/\tau}\right) \]

\[\text{Value}(t) = \text{Value}_0 e^{-t/\tau} \]

\(\tau \) can be obtained from differential equation
(prefactor on d/dt) e.g. \(\tau = L/R \) or \(\tau = RC \)
Group Problem: LR Circuit

1. What direction does the current flow just after turning off the battery (at $t=0+$)? At $t=\infty$?

2. Write a differential equation for the circuit

3. Solve and plot I vs. t and voltmeters vs. t
PRS Questions:
LR Circuit & Problem...
Non-Conservative Fields

\[\int E \cdot d\hat{s} = -\frac{d\Phi_B}{dt} \]

E is no longer a conservative field – Potential now meaningless
This concept (& next 3 slides) are complicated. Bare with me and try not to get confused.
Kirchhoff’s Modified 2nd Rule

\[\sum_i \Delta V_i = -\int \vec{E} \cdot d\vec{s} = +N \frac{d\Phi_B}{dt} \]

\[\Rightarrow \sum_i \Delta V_i = -N \frac{d\Phi_B}{dt} = 0 \]

If all inductance is ‘localized’ in inductors then our problems go away – we just have:

\[\sum_i \Delta V_i - L \frac{dI}{dt} = 0 \]
Ideal Inductor

BUT, EMF generated in an inductor is not a voltage drop across the inductor!

\[\varepsilon = -L \frac{dI}{dt} \]

\[\Delta V_{\text{inductor}} \equiv -\int \vec{E} \cdot d\vec{s} = 0 \]

Because resistance is 0, \(E \) must be 0!
Conclusion:
Be mindful of physics
Don’t think too hard doing it
Demos:
Breaking circuits with inductors
Internal Combustion Engine

See figure 1:
http://auto.howstuffworks.com/engine3.htm
Ignition System

The Distributor:
http://auto.howstuffworks.com/ignition-system4.htm

(A) High Voltage Lead (A) Coil connection
(B) Cap/Rotor Contact (B) Breaker Points
(C) Distributor Cap (D) Cam Follower
(D) To Spark Plug (E) Distributor Cam
Modern Ignition

See figure:
http://auto.howstuffworks.com/ignition-system.htm
Energy in Inductor
Energy Stored in Inductor

\[\mathcal{E} = +IR + L \frac{dI}{dt} \]

\[I \mathcal{E} = I^2 R + L I \frac{dI}{dt} \]

Battery Supplies

Resistor Dissipates

Inductor Stores

\[\frac{d}{dt} \left(\frac{1}{2} LI^2 \right) \]
Energy Stored in Inductor

\[U_L = \frac{1}{2} LI^2 \]

But where is energy stored?
Example: Solenoid

Ideal solenoid, length l, radius R, n turns/length, current I:

\[B = \mu_0 n I \]
\[L = \mu_0 n^2 \pi R^2 l \]

\[U_B = \frac{1}{2} LI^2 = \frac{1}{2} \left(\mu_0 n^2 \pi R^2 l \right) I^2 \]

\[U_B = \left(\frac{B^2}{2 \mu_0} \right) \pi R^2 l \]

Energy Density

Volume
Energy Density

Energy is stored in the magnetic field!

\[u_B = \frac{B^2}{2\mu_0} \quad : \text{Magnetic Energy Density} \]

\[u_E = \frac{\varepsilon_0 E^2}{2} \quad : \text{Electric Energy Density} \]
Group Problem: Coaxial Cable

1. How much energy is stored per unit length?
2. What is inductance per unit length?

HINTS: This does require an integral

The EASIEST way to do (2) is to use (1)
Back to Back EMF
PRS Question: Stopping a Motor