A. Line Integrals

The line integral of a scalar function \(f(x, y, z) \) along a path \(C \) is defined as

\[
\int_C f(x, y, z) \, ds = \lim_{N \to \infty} \sum_{i=1}^{N} f(x_i, y_i, z_i) \Delta s_i
\]

where \(C \) has been subdivided into \(N \) segments, each with a length \(\Delta s_i \). To evaluate the line integral, it is convenient to parameterize \(C \) in terms of the arc length parameter \(s \). With \(x = x(s) \), \(y = y(s) \) and \(z = z(s) \), the above line integral can be rewritten as an ordinary definite integral:

\[
\int_C f(x, y, z) \, ds = \int_{s_1}^{s_2} f[x(s), y(s), z(s)] \, ds
\]

Example 1:

As an example, let us consider the following integral in two dimensions:

\[
I = \int_C (x + y) \, ds
\]

where \(C \) is a straight line from the origin to \((1,1)\), as shown in the figure. Let \(s \) be the arc length measured from the origin. We then have

\[
x = s \cos \theta = \frac{s}{\sqrt{2}}
\]

\[
y = s \sin \theta = \frac{s}{\sqrt{2}}
\]

The endpoint \((1,1)\) corresponds to \(s = \sqrt{2} \). Thus, the line integral becomes

\[
I = \int_0^{\sqrt{2}} \left(\frac{s}{\sqrt{2}} + \frac{s}{\sqrt{2}} \right) \, ds = \sqrt{2} \int_0^{\sqrt{2}} s \, ds = \sqrt{2} \cdot \frac{s^2}{2} \bigg|_0^{\sqrt{2}} = \sqrt{2}
\]
PROBLEM 1: *(Answer on the tear-sheet at the end!)*

In this problem, we would like to integrate the same function \(x + y \) as in Example 1, but along a different curve \(C' = C_1 + C_2 \), as shown in the figure. The integral can be divided into two parts:

\[
I' = \int_{C} (x + y) \, ds = \int_{C_1} (x + y) \, ds + \int_{C_2} (x + y) \, ds
\]

(a) Evaluate \(I_1 = \int_{C_1} (x + y) \, ds \).

(b) Evaluate \(I_2 = \int_{C_2} (x + y) \, ds \).

(c) Now add up \(I_1 \) and \(I_2 \) to obtain \(I' \). Is the value of \(I' \) equal to \(I = \sqrt{2} \) in Example 1 above? What can you conclude about the value of a line integral? That is, is the integral independent of the path you take to get from the beginning point to the end point?
B. Line Integrals involving Vector Functions

For a vector function
\[\mathbf{F} = F_x \mathbf{i} + F_y \mathbf{j} + F_z \mathbf{k} \]
the line integral along a path \(C \) is given by
\[\int_C \mathbf{F} \cdot d\mathbf{s} = \int_C (F_x \mathbf{i} + F_y \mathbf{j} + F_z \mathbf{k}) \cdot (dx \mathbf{i} + dy \mathbf{j} + dz \mathbf{k}) = \int_C F_x dx + F_y dy + F_z dz \]
where
\[d\mathbf{s} = dx \mathbf{i} + dy \mathbf{j} + dz \mathbf{k} \]
is the differential line element along \(C \). If \(\mathbf{F} \) represents a force vector, then this line integral is the work done by the force to move an object along the path.

PROBLEM 2: (Answer on the tear-sheet at the end!)

Let us evaluate the line integral of
\[\mathbf{F}(x, y) = y \mathbf{i} - x \mathbf{j} \]
along the closed triangular path shown in the figure. Again, we divide the path into three segments \(C_1 \), \(C_2 \) and \(C_3 \), and evaluate the contributions separately. We will do the integral along \(C_i \) for you, as follows. Along \(C_1 \), the value of \(y \) is fixed at \(y = 0 \). With \(d\mathbf{s} = dx \mathbf{i} \), we have
\[\mathbf{F}(x, 0) \cdot d\mathbf{s} = (-x \mathbf{j}) \cdot (dx \mathbf{i}) = 0 \]
So the integral along \(C_1 \) is zero. Now you will evaluate the integral along \(C_3 \). The value of \(x \) is fixed at \(x = 0 \), \(d\mathbf{s} = dy \mathbf{j} \), and \(\mathbf{F}(0, y) \cdot d\mathbf{s} = ? \)

(a) Evaluate \(\int_{C_1} \mathbf{F} \cdot d\mathbf{s} \).
Finally we calculate the contribution to the line integral from \(C_2 \). To evaluate the integral, we again parameterize \(x \) and \(y \) in terms of the arc length \(s \), which we take to be the distance between a point along \(C_2 \) and \((1,0)\). From the figure shown on the right, we have

\[
\frac{1-x}{s} = \cos 45^\circ = \frac{1}{\sqrt{2}}, \quad \frac{y}{s} = \sin 45^\circ = \frac{1}{\sqrt{2}}
\]

\[
x = 1 - \frac{s}{\sqrt{2}}, \quad y = \frac{s}{\sqrt{2}}
\]

and \(dx = -\frac{ds}{\sqrt{2}} \) and \(dy = \frac{ds}{\sqrt{2}} \).

(b) With the information given above, evaluate \(\int_{C_2} \vec{F} \cdot d\vec{s} \).

\[
F_x dx + F_y dy = ?
\]

\[
\int_C \vec{F} \cdot d\vec{s} = \int_{C_2} F_x dx + F_y dy = ?
\]
C. Surface Integrals

Double Integrals

A function $F(x, y)$ of two variables can be integrated over a surface S, and the result is a double integral:

$$\int\int_S F(x, y) dA = \int\int_S F(x, y) dx \, dy$$

where $dA = dx \, dy$ is a (Cartesian) differential area element on S. In particular, when $F(x, y) = 1$, we obtain the area of the surface S:

$$A = \int\int_S dA = \int\int_S dx \, dy$$

For example, the area of a rectangle of length a and width b (see figure) is simply given by

$$A = \int_0^b \int_0^a dx \, dy = \int_0^b \left(\int_0^a dx \right) dy \quad = \int_0^a dy = ab$$

Now suppose $F(x, y) = \sigma(x, y)$, where σ is the charge density (Coulomb/m2). Then the double integral represents the total charge on the surface:

$$Q = \int\int_S \sigma(x, y) dA = \int\int_S \sigma(x, y) dx \, dy$$

On the other hand, if the surface is a circle, it would be more convenient to work in polar coordinates.

The differential area element is given by (see figure above)
\[dA = r \, dr \, d\theta \]

Integrating over \(r \) and \(\theta \), the area of a circle of radius \(R \) is

\[
A = \int_0^R \int_0^{2\pi} r \, d\theta \, dr = \int_0^R \left(\int_0^{2\pi} d\theta \right) r \, dr = \int_0^R 2\pi r \, dr = 2\pi \cdot \frac{R^2}{2} = \pi R^2
\]

as expected. If \(\sigma(r, \theta) \) is the charge distribution on a circular plate, then the total charge on the plate would be

\[
Q = \int_S \sigma(r, \theta) \, dA = \int_S \sigma(r, \theta) r \, dr \, d\theta
\]

Closed Surface

The surfaces we have discussed so far (rectangle and circle) are open surfaces. A closed surface is a surface which completely encloses a volume. An example of a closed surface is a sphere. To calculate the surface area of a sphere of radius \(R \), it is convenient to use spherical coordinates. The differential surface area element on the sphere is given by

\[
dA = R^2 \sin \theta \, d\theta \, d\phi
\]

Integrating over the polar angle \((0 \leq \theta \leq \pi)\) and the azimuthal angle \((0 \leq \phi \leq 2\pi)\), we obtain

\[
A = \iiint_S dA = \int_S R^2 \sin \theta \, d\theta \, d\phi
= R^2 \int_0^\pi \sin \theta \, d\theta \int_0^{2\pi} d\phi
= 4\pi R^2
\]

Suppose charge is uniformly distributed on the surface of the sphere of radius \(R \), then the total charge on the surface is

\[
Q = \iiint_S \sigma dA = 4\pi R^2 \sigma
\]

where \(\sigma \) is the charge density.
PROBLEM 3: *(Answer on the tear-sheet at the end!)*

(a) Find the total charge Q on the rectangular surface of length a (x direction from $x = 0$ to $x = a$) and width b (y direction from $y = 0$ to $y = b$), if the charge density is $\sigma(x, y) = kxy$, where k is a constant.

(b) Find the total charge on a circular plate of radius R if the charge distribution is $\sigma(r, \theta) = kr(1 - \sin \theta)$.
D. Surface Integrals involving Vector Functions

For a vector function \(\mathbf{F}(x, y, z) \), the integral over a surface \(S \) is given by

\[
\iint_S \mathbf{F} \cdot d\mathbf{A} = \iint_S \mathbf{F} \cdot \mathbf{n} \, dA = \iint_S F_n \, dA
\]

where \(d\mathbf{A} = dA \mathbf{n} \) and \(\mathbf{n} \) is a unit vector pointing in the normal direction of the surface. The dot product \(F_n = \mathbf{F} \cdot \mathbf{n} \) is the component of \(\mathbf{F} \) parallel to \(\mathbf{n} \). The above quantity is called “flux.” For an electric field \(\mathbf{E} \), the electric flux through a surface is

\[
\Phi_\mathbf{E} = \iint_S \mathbf{E} \cdot \mathbf{n} \, dA = \iint_S E_n \, dA
\]

As an example, consider a uniform electric field \(\mathbf{E} = a\hat{i} + b\hat{j} \) which intersects a surface of area \(A \). What is the electric flux through this area if the surface lies in the \(yz \) plane with normal in the positive \(x \) direction? In this case, the normal vector is \(\mathbf{n} = \hat{i} \), pointing in the \(+x \) direction. The electric flux through this surface is

\[
\Phi_\mathbf{E} = \mathbf{E} \cdot \mathbf{A} = \left(a\hat{i} + b\hat{j}\right) \cdot A\hat{i} = aA
\]

PROBLEM 4: *(Answer on the tear-sheet at the end!)*

(a) Consider a uniform electric field \(\mathbf{E} = a\hat{i} + b\hat{j} \) which intersects a surface of area \(A \). What is the electric flux through this area if the surface lies (i) in the \(xz \) plane with normal in the positive \(y \) direction? (ii) in the \(xy \) plane with the normal in the positive \(z \) direction?
A cylinder has base radius R and height h with its axis along the z-direction. A uniform field $\mathbf{E} = E_0 \mathbf{j}$ penetrates the cylinder. Determine the electric flux $\iint_S \mathbf{E} \cdot \mathbf{n} \, dA$ for the side of the cylinder with $y > 0$, where the area normal points away from the interior of the cylinder.

Hints: If θ is the angle in the xy plane measured from the x-axis toward the positive y-axis, what is the differential area of the side of the cylinder in terms of R, dz, and $d\theta$?

What is the vector formula for the normal \mathbf{n} to the side of the cylinder with $y > 0$, in terms of θ, \mathbf{i} and \mathbf{j}? What is $\mathbf{E} \cdot \mathbf{n}$?

$$\iint_S \mathbf{E} \cdot \mathbf{n} \, dA = ?$$
PROBLEM 1:

(a) \(I_1 = \int_{C_1} (x + y) \, ds = \)

(b) \(I_2 = \int_{C_2} (x + y) \, ds = \)

(c) \(I' = I_1 + I_2 = \)

Is the value of \(I' \) equal to \(I = \sqrt{2} \) in Example 1 above? What can you conclude about the value of a line integral? That is, is the integral independent of the path you take to get from the beginning point to the end point?

PROBLEM 2:

(a) \(\int_{C_3} \mathbf{F} \cdot d\mathbf{s} = \)

(b) \(\int_{C_4} \mathbf{F} \cdot d\mathbf{s} = \)
PROBLEM 3:

(a) Total charge $Q =$

(b) Total charge $Q =$

PROBLEM 4:

(a) Consider a uniform electric field $\vec{E} = a \hat{i} + b \hat{j}$ which intersects a surface of area A. What is the electric flux through this area if the surface lies

(i) in the xz plane?

(ii) in the xy plane?

(b) Determine the electric flux $\oiint S \vec{E} \cdot \hat{n} dA$ for the side of the cylinder with $y > 0$.