* Review of Lecture 1

Another Example:

LC circuit

![LC circuit diagram]

\[V = 0 \]

\[I(t) = \frac{d Q(t)}{d t} \]

At \(t = 0 \), \(I(0) = I_{\text{initial}}, \ Q(0) = 0 \)

"Initial Condition"

* Voltage Drop:

\[L \frac{dI}{dt} \]

Capacitor:

\[V = \frac{Q}{C} \]

\[L \frac{dI}{dt} + \frac{Q}{C} = 0 \Rightarrow \ddot{Q} + \frac{Q}{LC} = 0 \]

\[\omega_0 = \sqrt{\frac{1}{LC}} \]

Initial Condition

\(Q(t) = A \cos(\omega_0 t + \phi) \)

\(M \leftrightarrow L \)

\(Q(t) = \frac{I_{\text{initial}}}{\omega_0} \sin(\omega_0 t) \)

\(k \leftrightarrow \frac{1}{C} \)

(From \(I(0) \) and \(Q(0) \) we can solve and get)

\(\phi = -\frac{\pi}{2}, \ A = \frac{I_{\text{initial}}}{\omega_0} \)
\[M \frac{d^2x}{dt^2} = -kx \]

Kinetic Energy = \[\frac{1}{2} M \left(\frac{dx}{dt} \right)^2 \]

Potential Energy = \[\frac{1}{2} kx^2 \]

Total Energy \[E = \frac{1}{2} M \left(\frac{dx}{dt} \right)^2 + \frac{1}{2} kx^2 \]

If we solve the equation:

\[\omega_0 = \sqrt{\frac{k}{M}} \quad \ddot{x} + \omega_0^2 x = 0 \]

\[x(t) = A \cos(\omega_0 t + \phi) \]

\[\frac{dx(t)}{dt} = -A \omega_0 \sin(\omega_0 t + \phi) \]

\[E = \frac{1}{2} M A^2 \omega_0^2 \sin^2(\omega_0 t + \phi) + \frac{1}{2} kA^2 \cos^2(\omega_0 t + \phi) \]

\[= \frac{1}{2} kA^2 \left(\sin^2(\omega_0 t + \phi) + \cos^2(\omega_0 t + \phi) \right) \]

\[= \frac{1}{2} kA^2 \quad \text{Constant} \quad \text{!!!} \]

\[\Downarrow \text{proportional to} \quad A^2 \quad \text{amplitude} \]

\[\Downarrow \text{proportional to} \quad k \quad \text{"spring constant"} \]

\[E \]

\[\text{Kinetic E.} \]

\[\text{Potential E.} \]
Let's look at this example:

Newton's Law \(\tau = I \alpha \)

Origin: \(\Theta = 0 \) ⇒ Pointing downward

Define Anti-clockwise Rotation to be Positive

Initial Condition: At \(t = 0 \) ⇒ \(\begin{cases} \Theta(0) = \Theta_{\text{INITIAL}} \\ \dot{\Theta}(0) = 0 \end{cases} \)

Force Diagram:

\[\tau = \vec{R} \times \vec{F} \]

\[\tau = -mg \frac{d}{2} \sin \Theta(t) \]

Newton's Law: \(I \alpha(t) = I \ddot{\Theta}(t) = -mg \frac{d}{2} \sin \Theta(t) \)

\[I \ddot{\Theta} = -mg \frac{d}{2} \sin \Theta(t) \]

\[I = \frac{1}{3} ml^2 \]

\[\Rightarrow \ddot{\Theta}(t) = -3g \frac{d}{2l} \sin \Theta(t) = -W_0^2 \sin \Theta(t) \]

\[W_0 = \sqrt{\frac{3g}{2l}} \]

Now again: We have translated the physical situation to mathematics. This contains everything we know.

We need to solve this equation.

However, life is hard!

We don't know how to solve \(\ddot{\Theta} = -W_0^2 \sin \Theta \)

Not the end of world, we can solve it by a computer or
We can consider a special case: Small angle limit

\[\Theta(t) \to 0 \implies \sin \Theta(t) \approx \chi \]

\[\Theta = 1^\circ \implies \frac{\sin \Theta}{\Theta} = 99.99\% \]
\[5^\circ \implies 99.9\% \]
\[10^\circ \implies 99.5\% \]

The approximation is quite good!

Then the equation of motion becomes:

\[\ddot{\Theta}(t) = -\omega_0^2 \Theta(t) \quad \omega_0 = \sqrt{\frac{3g}{2l}} \]

We have solved this in previous lectures!

\[\Theta(t) = A \cos (\omega_0 t + \phi) \]

Initial conditions:
We conclude \(0 = -\omega A \sin \phi \implies \phi = 0 \)
\(\Theta_{\text{INITIAL}} = A \)
\[\therefore \Theta(t) = \Theta_{\text{INITIAL}} \cos (\omega_0 t) \]
\[\omega_0 = \sqrt{\frac{3g}{2l}} \]

In case if you have not noticed:

\[\omega_0 = \sqrt{\frac{g}{l}} \]

\(\text{All those systems} \)
Now we will add a drag force:

\[\tau_{\text{drag}}(t) = -b \dot{\theta}(t) \]

We choose this form: not because it is the most realistic description, but because this is solvable.

(Also not bad at all!)

If we choose another form of drag force:

\[\Rightarrow \text{have to solve it by computer} \]

Now teaching physics \(\Rightarrow \) That’s why we use those approximation + assumption in class.

* EQUATION OF MOTION:

\[\ddot{\theta}(t) = \frac{\tau(t)}{I} = \frac{\tau_g(t) + \tau_{\text{drag}}(t)}{I} \]

\[\approx -mg \frac{L}{2} \sin\theta(t) - b \dot{\theta}(t) \]

Small angle

\[\tau = \frac{3g}{2} \theta(t) - \frac{3b}{ml^2} \dot{\theta}(t) \]

Define \(\omega_0^2 = \frac{3g}{2} \quad \tau = \frac{3b}{ml^2} \)

Again: The reason we define \(\omega_0 \) and \(\tau \) is to simplify things, to make our life easier.

\[\Rightarrow \dot{\theta}(t) + \tau \dot{\theta}(t) + \omega_0^2 \theta(t) = 0 \]

Oscillation Frequency

Answer: \(W \geq \omega_0 \text{ or } W \leq \omega_0 \)
Now we want to solve this equation.

\[\Theta(t) + \Gamma \dot{\Theta}(t) + \omega_0^2 \Theta(t) = 0 \]

Use complex notation!

\[\Theta(t) = \text{Re} \left(z(t) \right) \quad z(t) = e^{i\alpha t} \]

\[\Rightarrow \quad \ddot{z}(t) + \Gamma \dot{z}(t) + \omega_0^2 z(t) = 0 \]

\[\left(-\alpha^2 + i\Gamma \alpha + \omega_0^2 \right) e^{i\alpha t} = 0 \]

\[e^{i\alpha t} \text{ is never } 0. \]

\[\Rightarrow \quad \alpha^2 - i\Gamma \alpha - \omega_0^2 = 0 \]

\[\Rightarrow \quad \alpha = \frac{i\Gamma \pm \sqrt{4\omega_0^2 - \Gamma^2}}{2} = \frac{i\Gamma}{2} \pm \sqrt{\omega_0^2 - \frac{\Gamma^2}{4}} \]

1. If \(\omega_0^2 > \frac{\Gamma^2}{4} \) "Underdamped Oscillators"

 The drag force is small

\[\Rightarrow \text{Define } \omega^2 = \omega_0^2 - \frac{\Gamma^2}{4} \]

\[z_+(t) = e^{-\frac{\Gamma}{2} t} e^{i\omega t} \]

\[z_-(t) = e^{-\frac{\Gamma}{2} t} e^{-i\omega t} \]

\[\text{Ans: Slower.} \]
\[\Theta_1(t) = \frac{1}{2}(Z_+(t) + Z_-(t)) \]
\[= e^{-\frac{\Gamma}{2}t} \cos \omega t \]
\[\Theta_2(t) = \frac{-i}{2} (Z_+(t) - Z_-(t)) \]
\[= e^{-\frac{\Gamma}{2}t} \sin \omega t \]
\[\Theta(t) = e^{-\frac{\Gamma}{2}t} \left[a \cos \omega t + b \sin \omega t \right] \]
or
\[\Theta(t) = Ae^{-\frac{\Gamma}{2}t} \left[\cos (\omega t + \phi) \right] \]

Use the initial condition:

\[\Theta(0) = \Theta_{\text{INITIAL}} = A \cos \phi \]
\[\dot{\Theta}(0) = -\frac{Ar}{2} \cos \phi - Aw \sin \phi = 0 \]

We can solve \(A \) and \(\phi \)

\[\tan \phi = -\frac{1}{2w} \quad \phi = \tan^{-1} \left(-\frac{1}{2w} \right) \]

\[A = \frac{\Theta_{\text{INITIAL}}}{\cos \phi} \]

\(\Theta(t) \) amplitude

\[e^{-\frac{\Gamma}{2}t} \]

Diagram showing oscillatory behavior with decay for \(t \to \frac{2\pi}{\omega} \), \(\not= W_0 \) for \(W < W_0 \).
2. \[\omega_0^2 = \frac{I^2}{4} \] "Critically Damped Oscillator"

This means that \(\omega = 0 \)!

Starting from 1.

\[\Theta(t) = e^{-\frac{I}{2}t} \cos\omega t \quad \overset{\omega \to 0}{\longrightarrow} \quad e^{-\frac{I}{2}t} \]

\[\Theta_2(t) = e^{-\frac{I}{2}t} \sin\omega t \quad \overset{\omega \to 0}{\longrightarrow} \quad 0 \]

So instead... we do:

\[\frac{\Theta_2(t)}{\omega} = \frac{1}{\omega} e^{-\frac{I}{2}t} \sin\omega t \quad \overset{\omega \to 0}{\longrightarrow} \quad t e^{-\frac{I}{2}t} \]

\[\Rightarrow \text{Linear combination of } \Theta_1(t) \text{ and } \frac{\Theta_2(t)}{\omega} : \]

\[\Theta(t) = (A + Bt) e^{-\frac{I}{2}t} \]

Prediction: No oscillation!

Application: √ Door close

√ Suspension System
3. \(w^2 < \frac{\Gamma^2}{4} \)

Huge drag force!

\[
\alpha = \frac{i \Gamma}{2} \pm \sqrt{\omega_0^2 - \frac{\Gamma^2}{4}}
\]

"Overdamped Oscillator"

\[
= i \left(\frac{\Gamma}{2} \pm \sqrt{\frac{\Gamma^2}{4} - \omega_0^2} \right)
\]

Define \(\Gamma_\pm = \frac{\Gamma}{2} \pm \sqrt{\frac{\Gamma^2}{4} - \omega_0^2} \)

\[
\Rightarrow \text{Solution: } \Theta(t) = A_+ e^{-\Gamma_+ t} + A_- e^{-\Gamma_- t}
\]

No oscillation! Two exponentially decaying terms.